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Classical boundary conditions for the Laplace operator

Let Ω ⊂ Rn be a bounded domain with smooth boundary.
To model problems in physics or technical applications we often
want to solve the Poisson problem

∆u = f

for a given function f ∈ C∞(Ω) or the eigenvalue problem

∆u = λu

for λ ∈ R.
Many solutions, and many solutions behave unphysically at the
boundary.
 We need boundary conditions!



The minimal and the maximal operator
We define

∆c : C∞c (Ω)→ C∞c (Ω)

as a densely defined operator in L2(Ω).
The minimal operator ∆min is the closure of ∆c with respect to
the graph norm.

L2(Ω) ⊃ H2
0 (Ω)

∆min−−−→ L2(Ω)

And the maximal operator is defined as its adjoint{
u ∈ L2(Ω) | ∆u ∈ L2(Ω)

}
︸ ︷︷ ︸

:=dom(∆max))H2(Ω)

∆max−−−→ L2(Ω).

The map

τ = (τD, τN) : C∞(Ω) → C∞(∂Ω)× C∞(∂Ω),

u 7→ (u|∂Ω, (∂νu)|∂Ω)

extends to a trace map τ : dom(∆max)→ Ȟ(∂Ω).



Symplectic structure on boundary data

Trace map τ : dom(∆max)→ Ȟ(∂Ω).
Here Ȟ(∂Ω) is a Sobolev type Hilbert space,

H3/2(∂Ω)× H1/2(∂Ω) ⊂ Ȟ(∂Ω) ⊂ H−1/2(∂Ω)× H−3/2(∂Ω)

on which a non-degenerate perfect symplectic pairing

Ȟ(∂Ω)× Ȟ(∂Ω)
B−→ R(

(v1,w1), (v2,w2)
)
7→

∫
∂Ω

(v1w2 − v2w1)

is well-defined.
Green identity∫

Ω

(
∆u1

)
u2 −

∫
Ω

u1∆u2 = ±B
(
τ(u1), τ(u2)

)
.



Self-adjoint extensions
If A ⊂ Ȟ(∂Ω) is a closed subspace, then

τ−1(A)︸ ︷︷ ︸
⊂dom(∆max)

∆A:=∆max|τ−1(A)−−−−−−−−−−→ L2(Ω)

is a closed extension.
∆A is self-adjoint iff A is a Lagrangian subspace of (Ȟ(∂Ω),B).

Examples:
Dirichlet boundary conditions: A :=

{
(0,w) ∈ Ȟ(∂Ω)

}
Neumann boundary conditions: A :=

{
(v ,0) ∈ Ȟ(∂Ω)

}
Under some regularity assumptions:
I solution of the Poisson problem
I discrete, real spectrum
I eigenspaces finite-dimensional, spanned by smooth

functions



Codimension 1 bdy cond. for Dirac operators
Now replace:

Ω ⊂ Rn C∞(Ω) Laplacian ∆

cpct. Riem. spin manfd. twisted spinors twisted Dirac oper.
with boundary M C∞(M,V ⊗ ΣM) /D

τ =: C∞(M,V ⊗ ΣM) → C∞
(
∂M, (V ⊗ ΣM)|∂M

)
,

u 7→ u|∂Ω

extends to a trace map τ : dom( /Dmax)→ Ȟ(∂M).
Here Ȟ(∂Ω) is a Sobolev type Hilbert space,

H1/2(∂M, (V ⊗ ΣM)|∂M
)
⊂ Ȟ(∂M) ⊂ H−1/2(∂M, (V ⊗ ΣM)|∂M

)
with a skew-hermitian sesquilinear map
B : Ȟ(∂M)× Ȟ(∂M)→ C.∫

M
〈 /Dϕ,ψ〉 −

∫
M
〈ϕ, /Dψ〉 = B

(
τ(ϕ), τ(ψ)

)
.



Self-adjoint extensions for D

If A ⊂ Ȟ(∂M) is a closed subspace, then

τ−1(A)︸ ︷︷ ︸
⊂dom( /Dmax)

/DA:= /Dmax|τ−1(A)−−−−−−−−−−→ L2(M,V ⊗ ΣM)

is a closed extension.
/DA is self-adjoint iff A is a Lagrangian subspace of (Ȟ(∂M),B).

Under some regularity assumptions:
I discrete, real spectrum
I eigenspaces finite-dimensional, spanned by smooth

sections
I /DA is a Fredholm operator
 Atiyah-Patodi-Singer index theorem.
See e.g. Bär-Ballmann arxiv 1101.1196.

https://arxiv.org/abs/1101.1196


The setting of our work

I Let (M,g) be a complete oriented Riemannian manifold,
N a compact oriented submanifold of codimension 2.

I We assume that M \ N is spin. Thus there is a complex
spinor bundle Σ→ M \ N.

I Let L→ M \ N be a flat hermitian line bundle. We get

π1(M \ N)→ S1 ⊂ C

I W := Σ⊗ L generalized spinor bundle over M \ N
More general frameworks are possible which will not be
discussed in this talk.



Monodromy

Monodromy α = (α1, . . . , αj).

N =
∐̀
j=1

Nj decomposition into connected components

Parallel transport in W around Nj is e2πiαj .
[αj ] ∈ R/Z only depends on j .



Main examples
I M spin. Monodromy comes from L.

Main subcase: L flat. Monodromy π1(M \ N)→ S1.
Main subsubcase: N is a link in S3.

(S1)` 3 (exp 2πiαj)j∈{1,...,`} 7→ Lα

I M is not spin, (more precisely: spin structure does not
extend), N connected.
Then monodromy only comes from Σ, α = 1/2 mod Z.
Main subcase: L = C
Example: M = CP2r , N = CP2r−1.
Fix p ∈ M \ N, solve /DΨ = ψ0δp on M \ N with bdy cond.
Expectation: If PMT would fail, we would get a map

S(Σp)× {bdy cond} → {non-zero spinors on N}.

Interesting applications?



Results by Ammann and Große

We obtain
I a bundle S → N,
I a Hilbert space of sections Ȟ(N,S),
I a skew-hermitian sesquilinear non-degenerate perfect

pairing B : Ȟ(N,S)× Ȟ(N,S)→ C
I a trace map τ : dom( /Dmax)→ Ȟ(N,S)

If A ⊂ Ȟ(N,S) is a closed subspace, then

τ−1(A)︸ ︷︷ ︸
⊂dom( /Dmax)

/DA:= /Dmax|τ−1(A)−−−−−−−−−−→ L2(M,V ⊗ ΣM)

is a closed extension.
dom( /D∅) = dom( /Dmin) and dom( /DȞ(N,S)) = dom( /Dmax).
/DA is self-adjoint iff A is a Lagrangian subspace of (Ȟ(∂M),B).



Some remarks
I In the case α ∈ Z the submanifold N is invisible, i.e.

/Dmin = /Dmax = /DM

I τ is not the extension of a restriction map.
In contrast we have: Suppose that ϕ ∈ dom( /Dmax) is
bounded on a neighbourhood of N. Then ϕ ∈ dom( /Dmin).

I The bundle S → N has a Clifford multiplication

TM|N ⊗ S → S

Normal volume element: ωnor := e1 · e2 if (e1,e2) is a
positively oriented orthonormal basis of the normal bundle.
This gives a splitting

S = S+ ⊕ S−

into the ±i-eigenspace bundles for the Clifford action of
ωnor.



Example: Portmann & Sok & Solovej

Ȟ(N,S+) and Ȟ(N,S−) are Lagrangian subspaces
of Ȟ(N,S).
PSS (2015–2018) considered the special case that M = S3 is
the round sphere and N is a link.
Electrons coupled magnetic fields.
Existence of harmonic spinc-spinors yield statements of the
type

If our world is stable, then the fine structure
constant ~c/e2 has to satisfy some bounds.

Measurements: ~c/e2 = 137.03599968 . . ..
A spectral flow argument yields harmonic spinors.
Question: How is this spectral flow related to classical link
invariants?



2-dimensional model space

Assume M = C 3 z, N = {0}, Σ = C2 = Σ+ ⊕ Σ−
L flat bundle over [C : {0}], monodromy α
Then ωnor is the standard volume element.

/D = /Dnor
=
√

2
(

0 ∂
−∂ 0

)
z−α

|z|−α represents a nowhere vanishing smooth section of L.
Ansatz:

Φ+
β,γ :=

(
zβzγ

0

)
, Φ−β,γ :=

(
0

zβzγ

)
.

where β and γ over real numbers with β − γ + α ∈ Z.
Φ±β,γ ∈ L2

loc iff β + γ > −1

/DΦ+
β,γ = −

√
2βΦ−β−1,γ , /DΦ−β,γ =

√
2γΦ+

β,γ−1,



Lemma.
The condition that Φ±β,γ ∈ dom( /Dmax) is characterized as follows
(“locally around 0”).
(1) Suppose β 6= 0 and γ 6= 0. Then Φ±β,γ ∈ dom( /Dmax) if and

only β + γ > 0.
(2) Suppose β = 0 and γ 6= 0. Then Φ+

0,γ ∈ dom( /Dmax) if and
only if γ > −1, and Φ−0,γ ∈ dom( /Dmax) if and only if γ > 0.

(3) Suppose β 6= 0 and γ = 0. Then Φ+
β,0 ∈ dom( /Dmax) if and

only if β > 0, and Φ−β,0 ∈ dom( /Dmax) if and only if β > −1.

(4) Suppose β = γ = 0. Φ±0,0 ∈ dom( /Dmax) = dom( /Dmin).

α ∈ (0,1): Then elements in dom( /Dmax) are of the form(
zα−1ϕ+

z−αϕ−

)
+ dom( /Dmin).



Disclaimer
The project is still work in progress. Until now we have only written up
in detail the case of a totally geodesic submanifold N and some
similar assumptions, but we do not expect any modifications for the
general case. Preprints are not yet available.

Summary
I We have a complete description of the self-adjoint extensions of

twisted Dirac operators on manifolds Mm \ Nm−2.
I The space N is invisible, if the monodromy is trivial.
I Spinors in the domain of the maximal operator which are not in

the minimal domain are not bounded (near the boundary). The
trace map has to be modified considerably.

I Boundary data are given by elements in a Hilbert space Ȟ of
sections of a bundle S → N. This space depends strongly on the
monodromy.

Thanks...
... to Boris Botvinnik and Nikolai Saveliev for discussions about link
invariants associated to these results.
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