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The dominant energy condition

Let h be a Lorentzian metric on N
Energy-momentum tensor or Einstein tensor

T h ∶= Rich −1
2

scal hh

We say that h satisfies the dominant energy condition in x ∈ N if
for all causal future oriented vectors X ,Y ∈ TxN:

T (X ,Y ) ≥ 0. (DEC)

Physical interpretation (Einstein equation):

Non-negative mass density of matter fields.



 



DEC on spacelike hypersurfaces

If M is a space-like hypersurface with induced metric g, and
future-oriented unit normal, then we define:
Energy density ρ ∶= T h(ν, ν) = 1

2 (scal g + (trW )2 − tr(W 2))
Momentum density j ∶= T h(ν, ⋅ )∣Tx M = divW − d trW
DEC for h implies ρ ≥ ∣j ∣.
Definition
Let g be a Riemannian metric and W a g-symmetric
endomorphism section. We say that (g,W ) satisfies
▸ the dominant energy condition if ρ ≥ ∣j ∣ (DEC)

I≥(M) ∶= {(g,W ) satisfying (DEC)}.

▸ the strict dominant energy condition if ρ > ∣j ∣ (DEC>)

I>(M) ∶= {(g,W ) satisfying (DEC>)}.



The inclusion R≥
(M)→ I≥(M)

R(M)↪ I(M), g ↦ (g,0)
R≥(M) ∶= {g ∈R ∣ scal g ≥ 0} =R(M) ∩ I≥(M)
R>(M) ∶= {g ∈R ∣ scal g > 0} =R(M) ∩ I>(M)

Work by Jonathan Glöckle
A lot is known about I>(M).
In particular, we have (g, λg) ∈ I>(M) if
▸ g ∈R>(M) and λ ∈ R, or
▸ g ∈R≥(M) and λ ∈ R ∖ {0}, or
▸ g ∈R(M) and ∣λ∣ ≫ 0.

We get a map Susp(R>(M))→ I>(M).

Susp(R>(M)) = (R>(M) × [−1,1]/M × {−1})/M × {1}.



 



The Lorentzian α-index

For any Ψ ∶ Sk+1 → I>(M) J. Glöckle constructs
αLor(Ψ) ∈ KO−n−(k+1)−1,1({∗}) ≅ KO−n−k−1({∗}).
Theorem (J. Glöckle 2019)
The diagram

πk(R>(M)) πk+1(Susp(R>(M)) πk+1(I>(M))

KO−n−k−1({∗})

Susp

αRiem αLor

commutes.



Key technique in Glöckle’s article: The Dirac-Witten operator
Literature: Witten 1981, Parker-Taubes, Hijazi-Zhang, . . . ,
Glöckle 2019.
Restrict the spinor bundle ΣN from (N,h) to (M,g).
As spinor module ΣN ∣M is one or two copies of ΣM.
However:
scalar product ⟪ ⋅ , ⋅⟫ on ΣN is indefinit (splitt signature),
scalar product ⟨ ⋅ , ⋅ ⟩ on ΣM positiv definit.
They are related by

⟨ϕ,ψ⟩ = ⟪ν ⋅ ϕ,ψ⟫.
The connections differ:

∇N
Xϕ = ∇M

X ϕ −
1
2
ν ⋅W (X) ⋅ ϕ

Dirac-Witten-Operator

D(g,W)ϕ =
n
∑
j=1

ej ⋅ ∇N
ej
ϕ

where (e1, . . . ,en) is a locally defined orthonormal frame of TM.



D(g,W) is self-adjoint and Fredholm.

Schrödinger-Lichnerowicz formula:

(D(g,W))
2
= (∇N)∗∇N + 1

2
(ρ − ν ⋅ j♯⋅),

The ∗ is taken on M with respect to ⟨⋅, ⋅⟩.
Recall:
Energy density ρ ∶= T h(ν, ν) = 1

2 (scal g + (trW )2 − tr(W 2))
Momentum density j ∶= T h(ν, ⋅ )∣Tx M = divW − d trW
DEC for h implies ρ ≥ ∣j ∣.

This implies that D(g,W) is invertible if (g,W ) ∈ I>(M).
As a consequence Glöckle can use index theoretical methods.



Our goal

Question
Want to understand I≥(M).
Does this has similar properties as I>(M)?
Compare: Any non-trivial element in πk(R>(M)), detected by
index theory remains non-trivial in πk(R≥(M)).
In fact, suppose we have a map, k > 0,

g ∶ Sk →R≥(M), α ↦ gα,

and assume gβ ∈R>(M) for some β ∈ Sk .
Then Schick–Wraith showed that Dgα is invertible for all α ∈ Sk .
Important ingredients:
▸ if ϕ ∈ ker Dgα , then ∇ϕ = 0 (“the kernel case”)
▸ Rigidity for metrics with parallel spinors (McKenzie Wang /

Dai–Wang–Wei)



Alternative presentation of our question

In the following diagram we assume k ≥ 1 and that the base
point is g0 resp. (g0,0) where g0 has positive scalar curvature.

πk(R>(M)) πk+1(I>(M))

πk(R≥(M)) πk+1(I≥(M))

Index theoretically determined non-trivial homotopy groups
survive in upper right and in lower left corner.
What about the lower right corner?



Analogous results for the Dirac–Witten operator?

Proposition (Ammann, Glöckle)
Assume that M is a connected closed spin manifold and
(g,W ) ∈ I≥(M).
We assume that ϕ ∈ ker D(g,W) ∖ {0}.
Then g,W , ϕ provides initial data for a Lorentzian manifold with
a parallel spinor.

Example
If (M,g,W ) ⊂ (N,h) Lorentz manifold, Φ /≡ 0 a parallel spinor.
Then ∇NΦ∣M = 0, and thus Φ∣M ∈ ker D(g,W).

Moreover, we then have Ric = fα⊗ α for some lightlike α.
Thus scal h = 0 and T = fα⊗ α.

f ≤ 0⇔ (g,W ) ∈ I≥(M).



Dirac currents
The Dirac current of a Lorentzian manifold (N,h) is the vector
field Vϕ with

h(X ,Vϕ) = −⟪X ⋅ ϕ,ϕ⟫ ∀X ∈ TN

Then h(Vϕ,Vϕ) ≤ 0, i.e. Vϕ is causal.
If Vϕ(p) is lightlike, then Vϕ(p) ⋅ ϕ(p) = 0.

The Dirac current of a Riemannian manifold (M,g) is the vector
field Uϕ with

g(X ,Uϕ) = i⟨X ● ϕ,ϕ⟩ ∀X ∈ TN

Unfortunately on ΣN ∣M two different Clifford multiplications are
used in the literature:
⋅ is given as the pullback of the Clifford multiplication on N.

X ● ϕ = iν ⋅X ⋅ ϕ.

Then Vϕ∣M = −Uϕ + uϕν for some u ∈ C∞(M).



Spacelike hypersurfaces

Work by H. Baum, T. Leistner, A. Lischewski
If (N,h) is a Lorentzian manifold with a parallel spinor ϕ.
As ϕ is parallel, Vϕ is a parallel vector field.
Assuming M connected Vϕ is either timelike or lightlike
everywhere.

If Vϕ is timelike, we locally have N = M0 ×R, h = g − dt2.
The easier case.



Lightlike case

We assume Vϕ is lightlike.

∇Nϕ = 0,
Vϕ ⋅ ϕ = 0

If we “restrict” ϕ to M, these equations imply the constraint
equations

∇M
X ϕ = i

2
W (X) ● ϕ, ∀X ∈ TM,

Uϕ ● ϕ = iuϕϕ,
(CE)



The Cauchy problem for parallel spinors

Conversely, if we have a Riemannian manifold (M,g) with a
non-trivial solution of

∇M
X ϕ = i

2
W (X) ● ϕ, ∀X ∈ TM,

Uϕ ● ϕ = iuϕϕ,
(CE)

then it extends to a Lorentzian metric on M × (−ε, ε) with a
parallel spinor ϕ with Vϕ lightlike.
Again: work by H. Baum, T. Leistner, A. Lischewski
Simplified by Julian Seipel (Master thesis, Regensburg),
following ideas by P. Chrusciel



Remark. In my last talk in Freiburg I explained:

Ammann–Kröncke–Müller proved:
For any family of metrics kτ , a < τ < b on Q with a parallel
spinors, we obtain a solutions to (CE) on

(M = Q × (a,b),g = f ∗τ (kτ) + dτ2). (*)

Leistner–Lischewski proved:
For any solution to (CE), M is locally isometric to a generalized
version of (*).

Thus solutions to (CE) on m-dimensional manifolds are tightly
related to families of metrics with parallel spinor on
(m − 1)-dimensional manifolds.



Some steps in the proof

Assume (DEC) and ϕ ∈ ker D(g,W).
The Schrödinger-Lichnerowicz equation implies
Schrödinger-Lichnerowicz formula:

0 =∫
M
⟨D(g,W)ϕ,D(g,W)ϕ⟩dµM

=∫
M
⟨∇Nϕ,∇Nϕ⟩dµM

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

+1
2 ∫M

⟨(ρ − ν ⋅ j♯⋅)ϕ,ϕ⟩dµM

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

,

This implies ∇Nϕ = 0, ρϕ = ν ⋅ j♯ ⋅ ϕ = −i j♯ ● ϕ, and ρ = ∣j ∣.

The Lorentzian Dirac current Vϕ is well-defined and ∇N -parallel
along M.
Thus Vϕ is everywhere lightlike or everywhere timelike.



The case ρ /≡ 0

In this case a calculation shows on {x ∈ M ∣ ρ(x) ≠ 0}:

Uϕ =
j♯

ρ
∥ϕ∥2.

The definition of Vϕ implies

Vϕ = −Uϕ + ∥ϕ∥2ν,

and thus Vϕ is lightlike. This implies (CE).



The case ρ ≡ 0

Now ρ = 0 and j = 0. This means that the constraint equations
for vaccuum Einstein equation are satisfied.
Thus we can choose N to be Ricci-flat (Choquet-Bruhat et al.).
We then can extend ϕ to a parallel section of ΣN.

Note: In this case ϕ might be spacelike or timelike.



Summary and outlook

Riemannian Lorentzian IDS
scal ≥ 0 DEC
scal > 0 DEC+

Dirac operator Dirac–Witten operator
πk({scal > 0}) αÐ→ KOm+k+1(p) πk+1({scal > 0}) αÐ→ KOm+k+1(p)

no scal > 0 metric no path from (g,−Ng) to (g,Ng)
parallel spinor initial data for Lorentzian

manifolds with parallel spinors
smooth finite dim. moduli space ???

Wang rigidity ???
πk{scal ≥ 0}) αÐ→ KOm+k+1(p) ???
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