Parallel spinors, Calabi–Yau manifolds and spinors

B. Ammann¹

¹Universität Regensburg, Germany

Oberseminar Differentialgeometrie Freiburg November 2, 2020

The dominant energy condition

Let *h* be a Lorentzian metric on *N* Energy-momentum tensor or Einstein tensor

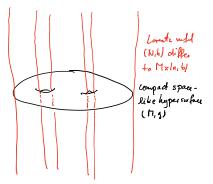
$$T^h \coloneqq \operatorname{Ric}^h - \frac{1}{2}\operatorname{scal} {}^h h$$

We say that *h* satisfies the dominant energy condition in $x \in N$ if for all causal future oriented vectors $X, Y \in T_x N$:

$$T(X,Y) \ge 0. \tag{DEC}$$

Physical interpretation (Einstein equation):

Non-negative mass density of matter fields.



DEC on spacelike hypersurfaces

If *M* is a space-like hypersurface with induced metric *g*, and future-oriented unit normal, then we define: Energy density $\rho := T^h(\nu, \nu) = \frac{1}{2} \left(\operatorname{scal}^g + (\operatorname{tr} W)^2 - \operatorname{tr}(W^2) \right)$ Momentum density $j := T^h(\nu, \cdot)|_{T_xM} = \operatorname{div} W - \operatorname{d} \operatorname{tr} W$ DEC for *h* implies $\rho \ge |j|$.

DEC for *n* implies $\rho \ge |$

Definition

Let g be a Riemannian metric and W a g-symmetric endomorphism section. We say that (g, W) satisfies

• the dominant energy condition if $\rho \ge |j|$ (DEC)

 $\mathcal{I}^{\geq}(M) \coloneqq \{(g, W) \text{ satisfying (DEC)}\}.$

► the strict dominant energy condition if ρ > |j| (DEC_>)

 $\mathcal{I}^{>}(M) \coloneqq \{(g, W) \text{ satisfying } (\mathsf{DEC}_{>})\}.$

The inclusion $\mathcal{R}^{\geq}(M) \rightarrow \mathcal{I}^{\geq}(M)$

$$\begin{aligned} \mathcal{R}(M) &\hookrightarrow \mathcal{I}(M), \, g \mapsto (g, 0) \\ \mathcal{R}^{\geq}(M) &\coloneqq \{g \in \mathcal{R} \mid \text{scal}^{g} \geq 0\} = \mathcal{R}(M) \cap \mathcal{I}^{\geq}(M) \\ \mathcal{R}^{>}(M) &\coloneqq \{g \in \mathcal{R} \mid \text{scal}^{g} > 0\} = \mathcal{R}(M) \cap \mathcal{I}^{>}(M) \end{aligned}$$

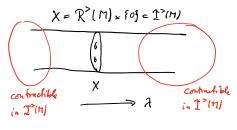
Work by Jonathan Glöckle

A lot is known about $\mathcal{I}^{>}(M)$. In particular, we have $(g, \lambda g) \in \mathcal{I}^{>}(M)$ if

- $g \in \mathcal{R}^{>}(M)$ and $\lambda \in \mathbb{R}$, or
- $g \in \mathcal{R}^{\geq}(M)$ and $\lambda \in \mathbb{R} \setminus \{0\}$, or
- $g \in \mathcal{R}(M)$ and $|\lambda| \gg 0$.

We get a map $\operatorname{Susp}(\mathcal{R}^{>}(M)) \to \mathcal{I}^{>}(M)$.

$$\operatorname{Susp}(\mathcal{R}^{>}(M)) = (\mathcal{R}^{>}(M) \times [-1, 1]/M \times \{-1\})/M \times \{1\}.$$

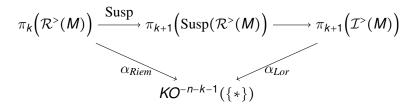


The Lorentzian α -index

For any $\Psi : S^{k+1} \to \mathcal{I}^{>}(M)$ J. Glöckle constructs $\alpha_{\text{Lor}}(\Psi) \in \text{KO}^{-n-(k+1)-1,1}(\{*\}) \cong \text{KO}^{-n-k-1}(\{*\}).$

Theorem (J. Glöckle 2019)

The diagram



commutes.

Key technique in Glöckle's article: The Dirac-Witten operator

Literature: Witten 1981, Parker-Taubes, Hijazi-Zhang, ..., Glöckle 2019.

Restrict the spinor bundle ΣN from (N, h) to (M, g). As spinor module $\Sigma N|_M$ is one or two copies of ΣM . However:

scalar product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on ΣN is indefinit (splitt signature), scalar product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on ΣM positiv definit. They are related by

$$\langle \varphi, \psi \rangle = \langle\!\!\langle \nu \cdot \varphi, \psi \rangle\!\!\rangle.$$

The connections differ:

$$\nabla_X^N \varphi = \nabla_X^M \varphi - \frac{1}{2} \nu \cdot W(X) \cdot \varphi$$

Dirac-Witten-Operator

$$D^{(g,W)}\varphi = \sum_{j=1}^{n} e_j \cdot \nabla_{e_j}^N \varphi$$

where (e_1, \ldots, e_n) is a locally defined orthonormal frame of *TM*.

 $D^{(g,W)}$ is self-adjoint and Fredholm.

Schrödinger-Lichnerowicz formula:

$$\left(D^{(g,W)}\right)^2 = (\nabla^N)^* \nabla^N + \frac{1}{2} (\rho - \nu \cdot j^{\sharp} \cdot),$$

The * is taken on *M* with respect to $\langle \cdot, \cdot \rangle$. Recall:

Energy density $\rho \coloneqq T^h(\nu, \nu) = \frac{1}{2} \left(\operatorname{scal}^g + (\operatorname{tr} W)^2 - \operatorname{tr}(W^2) \right)$ Momentum density $j \coloneqq T^h(\nu, \cdot)|_{T_xM} = \operatorname{div} W - \operatorname{dtr} W$ DEC for *h* implies $\rho \ge |j|$.

This implies that $D^{(g,W)}$ is invertible if $(g, W) \in \mathcal{I}^{>}(M)$. As a consequence Glöckle can use index theoretical methods.

Our goal

Question

Want to understand $\mathcal{I}^{\geq}(M)$.

Does this has similar properties as $\mathcal{I}^{>}(M)$?

Compare: Any non-trivial element in $\pi_k(\mathcal{R}^>(M))$, detected by index theory remains non-trivial in $\pi_k(\mathcal{R}^>(M))$. In fact, suppose we have a map, k > 0,

$$g: S^k \to \mathcal{R}^{\geq}(M), \quad \alpha \mapsto g_{\alpha},$$

and assume $g_{\beta} \in \mathcal{R}^{>}(M)$ for some $\beta \in S^{k}$.

Then Schick–Wraith showed that $D^{g_{\alpha}}$ is invertible for all $\alpha \in S^k$. Important ingredients:

- if $\varphi \in \ker D^{g_{\alpha}}$, then $\nabla \varphi = 0$ ("the kernel case")
- Rigidity for metrics with parallel spinors (McKenzie Wang / Dai–Wang–Wei)

Alternative presentation of our question

In the following diagram we assume $k \ge 1$ and that the base point is g_0 resp. $(g_0, 0)$ where g_0 has positive scalar curvature.

Index theoretically determined non-trivial homotopy groups survive in upper right and in lower left corner. What about the lower right corner?

Analogous results for the Dirac–Witten operator?

Proposition (Ammann, Glöckle)

Assume that *M* is a connected closed spin manifold and $(g, W) \in \mathcal{I}^{\geq}(M)$. We assume that $\varphi \in \ker D^{(g,W)} \setminus \{0\}$. Then g, W, φ provides initial data for a Lorentzian manifold with a parallel spinor.

Example

If $(M, g, W) \subset (N, h)$ Lorentz manifold, $\Phi \notin 0$ a parallel spinor. Then $\nabla^N \Phi|_M = 0$, and thus $\Phi|_M \in \ker D^{(g,W)}$.

Moreover, we then have $\operatorname{Ric} = f\alpha \otimes \alpha$ for some lightlike α . Thus scal ^{*h*} = 0 and *T* = $f\alpha \otimes \alpha$.

$$f \leq 0 \Leftrightarrow (g, W) \in \mathcal{I}^{\geq}(M).$$

Dirac currents

The Dirac current of a Lorentzian manifold (N, h) is the vector field V_{φ} with

$$h(X, V_{\varphi}) = -\langle\!\langle X \cdot \varphi, \varphi \rangle\!\rangle \quad \forall X \in TN$$

Then $h(V_{\varphi}, V_{\varphi}) \leq 0$, i.e. V_{φ} is causal. If $V_{\varphi}(p)$ is lightlike, then $V_{\varphi}(p) \cdot \varphi(p) = 0$.

The Dirac current of a Riemannian manifold (M,g) is the vector field U_{φ} with

$$g(X, U_{\varphi}) = i \langle X \bullet \varphi, \varphi \rangle \quad \forall X \in TN$$

Unfortunately on $\Sigma N|_M$ two different Clifford multiplications are used in the literature:

 \cdot is given as the pullback of the Clifford multiplication on *N*.

$$\boldsymbol{X} \bullet \boldsymbol{\varphi} = \boldsymbol{i} \boldsymbol{\nu} \cdot \boldsymbol{X} \cdot \boldsymbol{\varphi}.$$

Then $V_{\varphi}|_{M} = -U_{\varphi} + u_{\varphi}\nu$ for some $u \in C^{\infty}(M)$.

Work by H. Baum, T. Leistner, A. Lischewski If (N, h) is a Lorentzian manifold with a parallel spinor φ . As φ is parallel, V_{φ} is a parallel vector field. Assuming *M* connected V_{φ} is either timelike or lightlike everywhere.

If V_{φ} is timelike, we locally have $N = M_0 \times \mathbb{R}$, $h = g - dt^2$. The easier case.

Lightlike case

We assume V_{φ} is lightlike.

$$\nabla^{N} \varphi = \mathbf{0},$$
$$V_{\varphi} \cdot \varphi = \mathbf{0}$$

If we "restrict" φ to *M*, these equations imply the constraint equations

$$\nabla_X^M \varphi = \frac{i}{2} W(X) \bullet \varphi, \qquad \forall X \in TM,$$

$$U_{\varphi} \bullet \varphi = i u_{\varphi} \varphi,$$
 (CE)

The Cauchy problem for parallel spinors

Conversely, if we have a Riemannian manifold (M,g) with a non-trivial solution of

$$\nabla_X^M \varphi = \frac{i}{2} W(X) \bullet \varphi, \qquad \forall X \in TM,$$

$$U_{\varphi} \bullet \varphi = i u_{\varphi} \varphi,$$
 (CE)

then it extends to a Lorentzian metric on $M \times (-\epsilon, \epsilon)$ with a parallel spinor φ with V_{φ} lightlike.

Again: work by H. Baum, T. Leistner, A. Lischewski Simplified by Julian Seipel (Master thesis, Regensburg), following ideas by P. Chrusciel

Remark. In my last talk in Freiburg I explained:

Ammann–Kröncke–Müller proved:

For any family of metrics k_{τ} , $a < \tau < b$ on Q with a parallel spinors, we obtain a solutions to (CE) on

$$(M = Q \times (a, b), g = f_{\tau}^{*}(k_{\tau}) + d\tau^{2}).$$
 (*)

Leistner-Lischewski proved:

For any solution to (CE), M is locally isometric to a generalized version of (*).

Thus solutions to (CE) on *m*-dimensional manifolds are tightly related to families of metrics with parallel spinor on (m-1)-dimensional manifolds.

Some steps in the proof

Assume (DEC) and $\varphi \in \ker D^{(g,W)}$. The Schrödinger-Lichnerowicz equation implies Schrödinger-Lichnerowicz formula:

$$0 = \int_{M} \langle D^{(g,W)}\varphi, D^{(g,W)}\varphi \rangle d\mu^{M}$$

=
$$\underbrace{\int_{M} \langle \nabla^{N}\varphi, \nabla^{N}\varphi \rangle d\mu^{M}}_{\geq 0} + \frac{1}{2} \underbrace{\int_{M} \langle (\rho - \nu \cdot j^{\sharp} \cdot)\varphi, \varphi \rangle d\mu^{M}}_{\geq 0},$$

This implies $\nabla^{N}\varphi = 0$, $\rho\varphi = \nu \cdot j^{\sharp} \cdot \varphi = -ij^{\sharp} \bullet \varphi$, and $\rho = |j|$.

The Lorentzian Dirac current V_{φ} is well-defined and ∇^{N} -parallel along M.

Thus V_{φ} is everywhere lightlike or everywhere timelike.

The case $\rho \neq \mathbf{0}$

In this case a calculation shows on $\{x \in M \mid \rho(x) \neq 0\}$:

$$U_{\varphi} = rac{j^{\sharp}}{
ho} \|\varphi\|^2.$$

The definition of V_{φ} implies

$$V_{\varphi} = -U_{\varphi} + \|\varphi\|^2 \nu,$$

and thus V_{φ} is lightlike. This implies (CE).

Now $\rho = 0$ and j = 0. This means that the constraint equations for vaccuum Einstein equation are satisfied. Thus we can choose *N* to be Ricci-flat (Choquet-Bruhat et al.). We then can extend φ to a parallel section of ΣN .

Note: In this case φ might be spacelike or timelike.

Summary and outlook

_

Riemannian	Lorentzian IDS
scal ≥ 0	DEC
scal > 0	DEC+
Dirac operator	Dirac–Witten operator
$\pi_k(\{\text{scal} > 0\}) \xrightarrow{\alpha} KO_{m+k+1}(p)$	$\pi_{k+1}(\{\text{scal} > 0\}) \xrightarrow{\alpha} KO_{m+k+1}(p)$
no scal > 0 metric	no path from $(g, -Ng)$ to (g, Ng)
parallel spinor	initial data for Lorentzian
	manifolds with parallel spinors
smooth finite dim. moduli space	???
Wang rigidity	???
$\pi_k\{\text{scal} \geq 0\}) \xrightarrow{\alpha} KO_{m+k+1}(p)$???

