
Self-adjoint codimension 2 boundary
conditions for Dirac operators

Bernd Ammann

Universität Regensburg, Germany

Forschungsseminar Differentialgeometrie
Potsdam, June 25, 2020



The setting of this talk

I Let (M,g) be a complete oriented Riemannian manifold,
N a compact oriented submanifold of codimension k .

I [M : N] = (M \ N) ∪ SMN the blowup of M along N.
Here SMN is the normal sphere bundle of N in M,
SMN = ∂[M : N].
The pull-back ĝ|p = (π∗g)|p : Tp[M : N]⊗ Tp[M : N]→ R is
degenerate along the fibers of SMN.

I We assume that M \ N is spin.
I There is a complex spinor bundle Σ→ [M : N].
I Let L→ [M : N] be a hermitian line bundle with ∇, whose

curvature is a pull-back from M.
I W := Σ⊗ L generalized spinor bundle on [M : N]

More general frameworks are possible which will not be
discussed in this talk.
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Examples with different codimensions

I dim N = dim M − 1: Classical boundary problem.
If N separates M in M1 and M2, then

[M : N] = (M1 ∪ N)q (M2 ∪ N).

No degeneracy!

I dim N = dim M − 2. Monodromy α = (α1, . . . , αj).

N =
∐̀
j=1

Nj

Parallel transport in W around Nj is e2πiαj .
[αj ] ∈ R/Z only depends on j .
Main objective of the talk.

I dim N ≤ dim M − 3.
Then L = π∗(L). No monodromy effects, N is “invisible”.
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Main examples
I M spin. Monodromy comes from L.

Main subcase: L flat. Monodromy π1(M \ N)→ S1.
Main subsubcase: N is a link in S3.

(S1)` 3 exp 2πiα 7→ Lα

I (M \ N) ∪ Nj is spin. Similar discussion close to Nj
I (M \ N) ∪ Nj is not spin, (more precisely: spin structure

does not extend).
Then monodromy only comes from Σ, αj = 1/2 mod Z.
Main subcase: L = C
Example: M = CP2r , N = CP2r−1.
Fix p ∈ M \ N, solve /DΨ = ψ0δp on M \ N with bdy cond.
Expectation: If PMT would fail, we would get a map

S(Σp)× {bdy cond} → {non-zero spinors on N}.

Interesting applications?
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Genesis of the project

Work by mathematical physicists for M = S3 or M = R3.
Electrons coupled magnetic fields.
Existence of harmonic spinc-spinors yield statements of the
type

If our world is stable, then the fine structure
constant ~c/e2 has to satisfy some bounds.

Measurements: ~c/e2 = 137.03599968 . . .. Why this?

Examples of harmonic spinc-spinors on M = S3 with
distributional magnetic flux α along N yield smooth solutions
on R3: smoothing of magnetic flux, conformal change.

Leads to link invariants, Hopf insulators (3-d topological
insulators)
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Some literature (incomplete!)

I Aharonov & Casher 1978: general description
I Loss & Yau (& Fröhlich) 1986: first examples of harmonic

spinors, relation to “stablity of matter” and “estimates of the
fine structure constant”

I László Erdös & Solovej 2001: good progress, examples
with many harmonic spinors on S3, sketchy

I Portman & Sok & Solovej 2015–2018: mathematically
profound, but e.g. no flat complex line bundles are used.
Spinors S3 → C2 are glued along Seifert surfaces

I Lieb & Seiringer 2010. Book “Stability of matter”. Much
broader, mathematically rigorous, interesting to read

I Deng& Wang & Sun & Duan: arxiv cond-mat 1612.01518
keywords: DNA, supramolecular chemistry, polymers, helium
superfluid, spinor Bose-Einstein condensates, quantum
chromodynamics, string theory, quantum Hall effects, topological
insulators, Faddeev-Skyrme model, Hopfions,. . .

I Bi&Yan&Lu&Wang Phys. Rev. B 2017: Nodal-knot
semimetals
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Questions

Is this mathematically rigorous?
Interesting consequences for knot theory?
Interesting new boundary conditions for new applications?

My perspective
I Boris Botvinnik and Nikolai Saveliev asked me: can we

rigorously follow the calculation of these knot invariants?
More information about them? Interesting discussions
(stopped by Corona work overload etc)

I joint project with Nadine Große: classification of the
self-adjoint extensions in the general setting

I next steps: boundary regularity, compact resolvents,
Fredholmness, index theory, KO-theoretical framework

Disclaimer: Work in progress. Still sign mistakes, l.o.t.-terms
neglected etc.. Some parts will be sketchy.
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Other mathematical literature?

The problem can be interpreted as a stratified space with strata
of dimensions m and m − 2.
Much literature, but our case does not seem to be covered.
I Albin & Gell-Redman 2016: incomplete edge space.

Self-adjoint extensions, Fredholmness, index theory. This
seems to fit. However, A&G-R require a spectral condition,
called “Witt condition” which is in our case only satisfied for
α ∈ Z`.

I Mazzeo: has work prior to A&G-R on a blown-up version,
seems to have gone into A&G-R

I Leichtnam & Mazzeo & Piazza
I Brüning
I Sergiu Moroianu
I Atiyah & LeBrun

It seems that we have to do the work ourselves.
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Self-adjoint extensions. Again: the setting

(joint work in progress with Nadine Große, Freiburg)
I N a compact oriented submanifold of codimension 2 of M.
I π : [M : N]→ M the blowup of M along N.

SMN = ∂[M : N] = π−1N.
ĝ = π∗g : Tp[M : N]⊗ Tp[M : N]→ R is degenerate along
circle fibers of SMN → N

I W → [M : N] a suitable generalized ĝ spinor bundle

N =
∐̀
j=1

Nj

Monodromy α = (α1, . . . , α`).
Parallel transport in W around Nj is e2πiαj .

The associated Dirac operator /D is a formally self-adjoint 1st
order differential operator.



Minimal and maximal closed extensions

Idea: Try to follow Bär-Ballmann
C∞c (W ) := {sections of W with compact support in [M : N]}
C∞cc (W ) := {sections of W with compact support in M \ N}

The minimal Dirac operator /Dmin is the Dirac operator whose
domain is the closure of C∞cc (W ) with respect to the graph norm

‖ϕ‖2D := ‖ϕ‖2L2 + ‖Dϕ‖2L2 .

/Dmin is symmetric.

/Dmax := /D∗min, symmetry implies dom( /Dmin) ⊂ dom( /Dmax).

Our Goal: Find domains D with dom( /Dmin) ⊂ D ⊂ dom /Dmax
such that

/Dmax|D
is self-adjoint.
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First Surprise

dom( /Dmax) is not the closure of C∞c (W ).

Problem: /D : C∞c (W )→ C∞c (W ) not defined.

Even worse: /D(ϕ|M\N) /∈ L2, unless if ϕ is parallel along the
circles of SMN → N.
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What about {ϕ ∈ C∞c (W ) | ϕ parallel along circles}?

Case 1: αj /∈ Z. Such ϕ vanish on Nj .

{ϕ ∈ C∞c (W ) | ϕ parallel along circle} ⊂ dom( /Dmin)

(more precisely: a corresponding local statement close to Nj )

Case 2: αj ∈ Z. Then we have

dom( /Dmax) = dom( /Dmin),

i.e. /Dmin is self-adjoint!
Why this?

Thus: C∞c (W ) seems to be useless for us!
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The case α ∈ Z`

In this case W = π∗(W).

Lemma 1.
Let M be a complete manifold with generalized spinor bundle
W. Let H1

/D(M,W) be the completion of C∞c (M,W) w.r.t. the
graph norm of /D. If N ⊂ M is (a compact submanifold) of
codimension ≥ 2, then C∞c (M \ N,W) is dense in H1

/D(M,W).

Thus: “N is invisible.”



Lemma 1.
Let M be a complete manifold with generalized spinor bundle
W. Let H1

/D(M,W) be the completion of C∞c (M,W) w.r.t. the
graph norm of /D. If N ⊂ M is (a compact submanifold) of
codimension ≥ 2, then C∞c (M \ N,W) is dense in H1

/D(M,W).

Proof.
Wlog codimension 2.
Let ϕ ∈ C∞c (M,W).
Take a logarithmic cut-off

χk ,ε(x) :=


0 for r(x) ≤ e−kε ,
1
k log r(x) ek

ε for e−kε ≤ r(x) ≤ ε ,
1 for r(x) ≥ ε .

(1)

Then ∥∥∇(χk ,εϕ)−∇ϕ
∥∥

L2 ≤ C(ε+
√

k). (2)

For ε = k−1/2 → 0 we have χk ,εϕ→ ϕ.



Some positive results (without proofs)

Lemma.
Suppose that ϕ ∈ dom( /Dmax) is bounded on a neighbourhood
of N. Then ϕ ∈ dom( /Dmin).

Lemma.
Assume that the geometry of g and W is bounded, /D coercive
at infinity. Then on dom( /Dmin) the graph-norm for /D is
equivalent to the classical H1-norm, i.e. the graph norm for ∇.

Lemma.
For an L1

loc-section ϕ of W we define Dϕ in the distributional
sense where as test functions we use the compactly supported
smooth sections of W ∗⊗

∧n T ∗M. Then dom( /Dmax) is the vector
space of all L1

loc-section of W for which ϕ and Dϕ are in L2.



Abstract extension space

Q̌ :=
dom /Dmax

dom /Dmin

abstract extension space with graph norm.
For ϕ,ψ ∈ dom( /Dmax) we define

b̌([ϕ], [ψ]) :=

∫
M\N

(
〈 /Dϕ,ψ〉 − 〈ϕ, /Dψ〉

)
dvg .

It is a well-defined, non-degenerate skew-hermitian form on Q̌.
Goals:
Identify this as Ȟ-sections of a bundle over N.
Show that the pairing is perfect.
{self-adj. bdy cond.} 1:1←−→ {Lagrangian subspaces of (Q̌, b̌)}



The normal volume element

Let (e1,e2) be a positively oriented orthornormal frame of the
normal bundle νMN at p.
We define ωnor := e1 · e2 ∈ End(Wp).
Extend smoothly for p in neigborhood of N. Decompose into
ωnor-eigenspace bundles for eigenvalues ±i .

W = W+ ⊕W−

/D = /Dnor︸︷︷︸
odd

+ ∂r · /D
N︸ ︷︷ ︸

even

+l.o.t.



Portman-Sok-Solovej boundary condition

Choose a sign εj ∈ {±1} for each j = 1, . . . , `.
Close to Nj the boundary condition is

B = {ϕ ∈ dom( /Dmax) | (ωnor + iεj) · ϕ ∈ dom( /Dmax)}.

Theorem 2 (PSS ≈ 2017).
This is a self-adjoint boundary condition in the case M = S3,
N a link, L flat.
We extend this the whole setting, but there are many more
self-adjoint extensions.



Continuity in α

Is the PSS boundary condition continuous in α?

The PSS boundary condition is
I continous for εjαj ↗ 0 mod Z,
I but non-continuous for εjαj ↘ 0 mod Z.

General boundary conditions

The Ȟ-spaces have a both-sided regularity incontinuity at
αj ≡ 1/2 mod 2

Importance of continuity

Spectral flow arguments
Fredholm index is not constant at αj ≡ 0 mod Z.



2-dimensional model space

Assume M = C 3 z, N = {0}, Σ = C2 = Σ+ ⊕ Σ−
L flat bundle over [C : {0}], monodromy α
Then ωnor is the standard volume element.

/D = /Dnor
=
√

2
(

0 ∂
−∂ 0

)
z−α

|z|−α represents a nowhere vanishing smooth section of L.
Ansatz:

Φ+
β,γ :=

(
zβzγ

0

)
, Φ−β,γ :=

(
0

zβzγ

)
.

where β and γ over real numbers with β − γ + α ∈ Z.
Φ±β,γ ∈ L2

loc iff β + γ > −1

/DΦ+
β,γ = −

√
2βΦ−β−1,γ , /DΦ−β,γ =

√
2γΦ+

β,γ−1,



Lemma.
The condition that Φ±β,γ ∈ dom( /Dmax) is characterized as follows
(“locally around 0”).
(1) Suppose β 6= 0 and γ 6= 0. Then Φ±β,γ ∈ dom( /Dmax) if and

only β + γ > 0.
(2) Suppose β = 0 and γ 6= 0. Then Φ+

0,γ ∈ dom( /Dmax) if and
only if γ > −1, and Φ−0,γ ∈ dom( /Dmax) if and only if γ > 0.

(3) Suppose β 6= 0 and γ = 0. Then Φ+
β,0 ∈ dom( /Dmax) if and

only if β > 0, and Φ−β,0 ∈ dom( /Dmax) if and only if β > −1.

(4) Suppose β = γ = 0. Φ±0,0 ∈ dom( /Dmax) = dom( /Dmin).

α ∈ (0,1): Then elements in dom( /Dmax) are of the form(
zα−1ϕ+

z−αϕ−

)
+ dom( /Dmin).



Higher dimensions: Extension map and Trace map

Now: For simplicity of presentation let N be connected.
Idea: The trace map is given by

R : dom( /Dmax) → Γ(W |SM N)

ϕ 7→ lim
r↘0

(
r1−α 0

0 rα

)
ϕ|∂Ur (N)

b̌([ϕ], [ψ])
def
=

∫
M\N

(
〈 /Dϕ,ψ〉 − 〈ϕ, /Dψ〉

)
dvg

= B
(
R(ϕ),R(ψ)

)
where B(Φ,Ψ) =

∫
SM N〈Φ, ∂r ·Ψ〉dµ and where µ is the

S1-equivariant measure on SMN with π∗µ = dvolN .



Wish list

Extension operator

E : Ȟα(W |SM N) := Image(R)→ dom( /Dmax)

Wishes:

R ◦ E = Id

b̌(ϕ, E(Ψ)) = B(R(ϕ),Ψ)

B is a perfect pairing on Ȟα(W |SM N).

To determine Ȟα(W |SM N) we have to consider
I S1-equivariance
I regularity along N



Equivariance

Let α ∈ (0,1)
S1 ⊂ C acts on the S1-principle bundle SMN → N:
ρ : S1 → Diff(SMN).
Then K := dρ(i) a vector field on SMN.
We define

Γα(W +|SM N) :=
{

Φ ∈ C∞(W +|SM N) with ∇K Φ = i(1− α)Φ
}

Γα(W−|SM N) :=
{

Φ ∈ C∞(W−|SM N) with ∇K Φ = −iαΦ
}

Γα(W |SM N) := Γα(W +|SM N)⊕ Γα(W−|SM N)

Γα(W |SM N) is the space of sections of a vector bundle over N.



Density and regularity

Relevance: Let Φ± ∈ Γα(W±|SM N).
Then

χ(r)
(

rα−1Φ+ + r−αΦ−
)
∈ dom( /Dmax).

Up to l.o.t. and ∇χ-terms it is in the kernel of the normal Dirac
operator /Dnor.
Γα(W |SM N) is dense in the Hilbert space Ȟα(W |SM N).
To explain the norm on the space we will discuss
I The canonical metric on the normal bundle
I The N-Dirac operator
I The Ȟα-spaces



Canonical metric on the normal bundle

To understand codimension 1 boundary conditions, one has to
understand half-cylinders N × [0,∞) first.
In fact, half cylinders are a special case of the (blown-up)
canonical metric on the normal bundle.

Let N ⊂ M be of codimension k . The canonical metric is a
Riemannian metric on the total space of π : νMN → N such that

I π is a Riemannian submersion,
I the horizontal spaces Hp are given by the connection on
νMN → N,

I for V ∈ νM the vertical space in V is naturally isometric to
νMN|π(V ).

The Dirac operator /D0 on (νMN,gcan) is our model operator.



The N-Dirac operator

The horizontal space also define a distribution H of
codimension k − 1 in SMN.
For an onb e1, . . . ,em−k of Hp and ϕ ∈ Γ(W |SM N) we define the
N-Dirac operator as

(
/DN
ϕ
)
|p := −

m−k∑
j=1

∂r · ej · ∇ejϕ.

Lemma.
The operator /DN is an odd, formally self-adjoint, elliptic
operator of Dirac type on N.



Back to our codimension 2 setting

On the model space we have

/D0 = ∂r · ∇r +
K
r
· ∇K/r︸ ︷︷ ︸

/Dnor

+∂r · /D
N

= ∂r ·
(
∇r − ωnor · ∇K/r + /DN

)
Note that (

∇r − ωnor · ∇K/r
) (

rα−1ϕ+

)
= 0(

∇r − ωnor · ∇K/r
) (

r−αϕ−
)

= 0

Idea: Analyse this in a spectral decomposition for /DN

This will give us the Ȟ-space.



The Ȟα spaces
“Theorem”.
Let α ∈ (0,1). We obtain a splitting

Γα(W |SM N) = V+ ⊕ V−

Ȟα(W |SM N) = V+
Hβ

⊕ V−
H−β

where β := min{α,1− α}.
There is a surjective trace map R : dom( /Dmax)→ Ȟα(W |SM N)
with kernel dom( /Dmin) and an injective extension map
E : Ȟα(W |SM N)→ dom( /Dmax) with

R ◦ E = Id

b̌(ϕ, E(Ψ)) = B(R(ϕ),Ψ)

B is a perfect pairing on Ȟα(W |SM N).

V− :=
{

Φ ∈ Γα(W |SM N) | Φ “extends” to a /D0-harmonic L2-spinor
}



The Ansatz

Attention: /DN anticommutes with ωnor.
We assume /DN

Φ = λΦ, Φ = (Φ+,Φ−).
For r →∞: /DN dominates, thus L2 ⇔ λ > 0
For r → 0: ∇K/r dominates
Ansatz
We search for a solution asymptotic to exp(−λr)Φ

ϕ = f+(r)Φ+ + f−(r)Φ−, f = (f+, f−)

/D0ϕ = 0 then translates into

0 = f ′(r) +
1
r

(
1− α 0

0 α

)
f (r) + λf (r)

The asymptotics for r → 0 of solutions of this ODE depend
strongly on the sign of α− 1

2 .



The Ȟα spaces

For α ∈ (0,1/2): for a smooth section Φ = (Φ+,Φ−) of W |SM N

‖Φ‖2Ȟ := ‖Φ+‖2H−α + ‖Φ−‖2Hα

For α ∈ (1/2,1): for a smooth section Φ = (Φ+,Φ−) of W |SM N

‖Φ‖2Ȟ := ‖Φ+‖2H1−α + ‖Φ−‖2Hα−1

For α = 1/2: the space V− is spanned by the eigenspinors of
/DN to the positive eigenvalues.



The extension map

On V− it is obtained by solving the ODE backwards: from r → 0
to r →∞.

V− → dom( /Dmax)

What do we do with V+? (for simplicity α 6= 1/2)
Extend Φ ∈ V+ by

E(Φ) := rβ−1 exp
(
−| /DN |r

)
Φ.

Then /D0ϕ 6= 0, but the L2-norm of /D0ϕ remains sufficiently
well-controlled.



Why is it impossible to find an extension on a larger
space H̃? Why is it impossible that ImageR is larger?

(Until now we only have seen arguments for Ȟα ⊆ ImageR!)

Answer: As we have found a space, on which B is a perfect
pairing!
Consider the continuous map

Ψ 7→ b(ϕ, E(Ψ)) = B(R(ϕ),Ψ)

Thus B(R(ϕ), • ) ∈ H̃∗

=⇒ R(ϕ) ⊆ H̃∗B ⊆ Ȟ∗B = Ȟ.

So, if Ȟ ( H̃ is a strict inclusion, then H̃∗B ( Ȟ, thus we get a
contradiction to R ◦ E = Id.
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