Self-adjoint codimension 2 boundary conditions for Dirac operators

Bernd Ammann

Universität Regensburg, Germany
Forschungsseminar Differentialgeometrie
Potsdam, June 25, 2020

The setting of this talk

- Let (M, g) be a complete oriented Riemannian manifold, N a compact oriented submanifold of codimension k.
- $[M: N]=(M \backslash N) \cup S_{M} N$ the blowup of M along N. Here $S_{M} N$ is the normal sphere bundle of N in M, $S_{M} N=\partial[M: N]$.
The pull-back $\left.\hat{g}\right|_{p}=\left.\left(\pi^{*} g\right)\right|_{p}: T_{p}[M: N] \otimes T_{p}[M: N] \rightarrow \mathbb{R}$ is degenerate along the fibers of $S_{M} N$.

The setting of this talk

- Let (M, g) be a complete oriented Riemannian manifold, N a compact oriented submanifold of codimension k.
- $[M: N]=(M \backslash N) \cup S_{M} N$ the blowup of M along N. Here $S_{M} N$ is the normal sphere bundle of N in M, $S_{M} N=\partial[M: N]$.
The pull-back $\left.\hat{g}\right|_{p}=\left.\left(\pi^{*} g\right)\right|_{p}: T_{p}[M: N] \otimes T_{p}[M: N] \rightarrow \mathbb{R}$ is degenerate along the fibers of $S_{M} N$.
- We assume that $M \backslash N$ is spin.
- There is a complex spinor bundle $\Sigma \rightarrow[M: N]$.
- Let $L \rightarrow[M: N]$ be a hermitian line bundle with ∇, whose curvature is a pull-back from M.
- $W:=\Sigma \otimes L$ generalized spinor bundle on $[M: N]$

The setting of this talk

- Let (M, g) be a complete oriented Riemannian manifold, N a compact oriented submanifold of codimension k.
- $[M: N]=(M \backslash N) \cup S_{M} N$ the blowup of M along N. Here $S_{M} N$ is the normal sphere bundle of N in M, $S_{M} N=\partial[M: N]$.
The pull-back $\left.\hat{g}\right|_{p}=\left.\left(\pi^{*} g\right)\right|_{p}: T_{p}[M: N] \otimes T_{p}[M: N] \rightarrow \mathbb{R}$ is degenerate along the fibers of $S_{M} N$.
- We assume that $M \backslash N$ is spin.
- There is a complex spinor bundle $\Sigma \rightarrow[M: N]$.
- Let $L \rightarrow[M: N]$ be a hermitian line bundle with ∇, whose curvature is a pull-back from M.
- $W:=\Sigma \otimes L$ generalized spinor bundle on $[M: N]$

More general frameworks are possible which will not be discussed in this talk.

Examples with different codimensions

$-\operatorname{dim} N=\operatorname{dim} M-1$: Classical boundary problem. If N separates M in M_{1} and M_{2}, then

$$
[M: N]=\left(M_{1} \cup N\right) \amalg\left(M_{2} \cup N\right) .
$$

No degeneracy!

Examples with different codimensions

$-\operatorname{dim} N=\operatorname{dim} M-1$: Classical boundary problem. If N separates M in M_{1} and M_{2}, then

$$
[M: N]=\left(M_{1} \cup N\right) \amalg\left(M_{2} \cup N\right) .
$$

No degeneracy!

- $\operatorname{dim} N=\operatorname{dim} M-2$. Monodromy $\alpha=\left(\alpha_{1}, \ldots, \alpha_{j}\right)$.

$$
N=\coprod_{j=1}^{\ell} N_{j}
$$

Parallel transport in W around N_{j} is $e^{2 \pi i \alpha_{j}}$. $\left[\alpha_{j}\right] \in \mathbb{R} / \mathbb{Z}$ only depends on j.
Main objective of the talk.

Examples with different codimensions

$-\operatorname{dim} N=\operatorname{dim} M-1$: Classical boundary problem. If N separates M in M_{1} and M_{2}, then

$$
[M: N]=\left(M_{1} \cup N\right) \amalg\left(M_{2} \cup N\right) .
$$

No degeneracy!

- $\operatorname{dim} N=\operatorname{dim} M-2$. Monodromy $\alpha=\left(\alpha_{1}, \ldots, \alpha_{j}\right)$.

$$
N=\coprod_{j=1}^{\ell} N_{j}
$$

Parallel transport in W around N_{j} is $e^{2 \pi i \alpha_{j}}$.
$\left[\alpha_{j}\right] \in \mathbb{R} / \mathbb{Z}$ only depends on j.
Main objective of the talk.

- $\operatorname{dim} N \leq \operatorname{dim} M-3$.

Then $L=\pi^{*}(\mathcal{L})$. No monodromy effects, N is "invisible".

Main examples

- M spin. Monodromy comes from L.

Main subcase: L flat. Monodromy $\pi_{1}(M \backslash N) \rightarrow S^{1}$. Main subsubcase: N is a link in \mathbb{S}^{3}.

$$
\left(S^{1}\right)^{\ell} \ni \exp 2 \pi i \alpha \mapsto L_{\alpha}
$$

Main examples

- M spin. Monodromy comes from L.

Main subcase: L flat. Monodromy $\pi_{1}(M \backslash N) \rightarrow S^{1}$. Main subsubcase: N is a link in \mathbb{S}^{3}.

$$
\left(S^{1}\right)^{\ell} \ni \exp 2 \pi i \alpha \mapsto L_{\alpha}
$$

- $(M \backslash N) \cup N_{j}$ is spin. Similar discussion close to N_{j}

Main examples

- M spin. Monodromy comes from L.

Main subcase: L flat. Monodromy $\pi_{1}(M \backslash N) \rightarrow S^{1}$.
Main subsubcase: N is a link in \mathbb{S}^{3}.

$$
\left(S^{1}\right)^{\ell} \ni \exp 2 \pi i \alpha \mapsto L_{\alpha}
$$

- $(M \backslash N) \cup N_{j}$ is spin. Similar discussion close to N_{j}
- $(M \backslash N) \cup N_{j}$ is not spin, (more precisely: spin structure does not extend).
Then monodromy only comes from $\Sigma, \alpha_{j}=1 / 2 \bmod \mathbb{Z}$.
Main subcase: $L=\underline{\mathbb{C}}$
Example: $M=\mathbb{C} P^{2 r}, N=\mathbb{C} P^{2 r-1}$.
Fix $p \in M \backslash N$, solve $D \Psi=\psi_{0} \delta_{p}$ on $M \backslash N$ with bdy cond.
Expectation: If PMT would fail, we would get a map

$$
S\left(\Sigma_{p}\right) \times\{\text { bdy cond }\} \rightarrow\{\text { non-zero spinors on } N\}
$$

Interesting applications?

Genesis of the project

Work by mathematical physicists for $M=\mathbb{S}^{3}$ or $M=\mathbb{R}^{3}$. Electrons coupled magnetic fields.
Existence of harmonic spin ${ }^{c}$-spinors yield statements of the type

If our world is stable, then the fine structure constant $\hbar c / e^{2}$ has to satisfy some bounds.

Measurements: $\hbar c / e^{2}=137.03599968 \ldots$. Why this?

Genesis of the project

Work by mathematical physicists for $M=\mathbb{S}^{3}$ or $M=\mathbb{R}^{3}$.
Electrons coupled magnetic fields.
Existence of harmonic spin ${ }^{c}$-spinors yield statements of the type

If our world is stable, then the fine structure constant $\hbar c / e^{2}$ has to satisfy some bounds.

Measurements: $\hbar c / e^{2}=137.03599968 \ldots$. Why this?
Examples of harmonic spin ${ }^{c}$-spinors on $M=\mathbb{S}^{3}$ with distributional magnetic flux α along N yield smooth solutions on \mathbb{R}^{3} : smoothing of magnetic flux, conformal change.
Leads to link invariants, Hopf insulators (3-d topological insulators)

Some literature (incomplete!)

- Aharonov \& Casher 1978: general description
- Loss \& Yau (\& Fröhlich) 1986: first examples of harmonic spinors, relation to "stablity of matter" and "estimates of the fine structure constant"
- László Erdös \& Solovej 2001: good progress, examples with many harmonic spinors on \mathbb{S}^{3}, sketchy

Some literature (incomplete!)

- Aharonov \& Casher 1978: general description
- Loss \& Yau (\& Fröhlich) 1986: first examples of harmonic spinors, relation to "stablity of matter" and "estimates of the fine structure constant"
- László Erdös \& Solovej 2001: good progress, examples with many harmonic spinors on \mathbb{S}^{3}, sketchy
- Portman \& Sok \& Solovej 2015-2018: mathematically profound, but e.g. no flat complex line bundles are used. Spinors $S^{3} \rightarrow \mathbb{C}^{2}$ are glued along Seifert surfaces

Some literature (incomplete!)

- Aharonov \& Casher 1978: general description
- Loss \& Yau (\& Fröhlich) 1986: first examples of harmonic spinors, relation to "stablity of matter" and "estimates of the fine structure constant"
- László Erdös \& Solovej 2001: good progress, examples with many harmonic spinors on \mathbb{S}^{3}, sketchy
- Portman \& Sok \& Solovej 2015-2018: mathematically profound, but e.g. no flat complex line bundles are used. Spinors $S^{3} \rightarrow \mathbb{C}^{2}$ are glued along Seifert surfaces
- Lieb \& Seiringer 2010. Book "Stability of matter". Much broader, mathematically rigorous, interesting to read

Some literature (incomplete!)

- Aharonov \& Casher 1978: general description
- Loss \& Yau (\& Fröhlich) 1986: first examples of harmonic spinors, relation to "stablity of matter" and "estimates of the fine structure constant"
- László Erdös \& Solovej 2001: good progress, examples with many harmonic spinors on \mathbb{S}^{3}, sketchy
- Portman \& Sok \& Solovej 2015-2018: mathematically profound, but e.g. no flat complex line bundles are used. Spinors $S^{3} \rightarrow \mathbb{C}^{2}$ are glued along Seifert surfaces
- Lieb \& Seiringer 2010. Book "Stability of matter". Much broader, mathematically rigorous, interesting to read
- Deng\& Wang \& Sun \& Duan: arxiv cond-mat 1612.01518 keywords: DNA, supramolecular chemistry, polymers, helium superfluid, spinor Bose-Einstein condensates, quantum chromodynamics, string theory, quantum Hall effects, topological insulators, Faddeev-Skyrme model, Hopfions,...
- Bi\&Yan\&Lu\&Wang Phys. Rev. B 2017: Nodal-knot semimetals

Questions

Is this mathematically rigorous?
Interesting consequences for knot theory?
Interesting new boundary conditions for new applications?

Questions

Is this mathematically rigorous?
Interesting consequences for knot theory?
Interesting new boundary conditions for new applications?
My perspective

- Boris Botvinnik and Nikolai Saveliev asked me: can we rigorously follow the calculation of these knot invariants? More information about them? Interesting discussions (stopped by Corona work overload etc)

Questions

Is this mathematically rigorous?
Interesting consequences for knot theory?
Interesting new boundary conditions for new applications?
My perspective

- Boris Botvinnik and Nikolai Saveliev asked me: can we rigorously follow the calculation of these knot invariants? More information about them? Interesting discussions (stopped by Corona work overload etc)
- joint project with Nadine Große: classification of the self-adjoint extensions in the general setting

Questions

Is this mathematically rigorous?
Interesting consequences for knot theory?
Interesting new boundary conditions for new applications?
My perspective

- Boris Botvinnik and Nikolai Saveliev asked me: can we rigorously follow the calculation of these knot invariants? More information about them? Interesting discussions (stopped by Corona work overload etc)
- joint project with Nadine Große: classification of the self-adjoint extensions in the general setting
- next steps: boundary regularity, compact resolvents, Fredholmness, index theory, KO-theoretical framework

Questions

Is this mathematically rigorous?
Interesting consequences for knot theory?
Interesting new boundary conditions for new applications?
My perspective

- Boris Botvinnik and Nikolai Saveliev asked me: can we rigorously follow the calculation of these knot invariants? More information about them? Interesting discussions (stopped by Corona work overload etc)
- joint project with Nadine Große: classification of the self-adjoint extensions in the general setting
- next steps: boundary regularity, compact resolvents, Fredholmness, index theory, KO-theoretical framework
Disclaimer: Work in progress. Still sign mistakes, 1.o.t.-terms neglected etc.. Some parts will be sketchy.

Other mathematical literature?

The problem can be interpreted as a stratified space with strata of dimensions m and $m-2$. Much literature, but our case does not seem to be covered.

- Albin \& Gell-Redman 2016: incomplete edge space. Self-adjoint extensions, Fredholmness, index theory. This seems to fit. However, A\&G-R require a spectral condition, called "Witt condition" which is in our case only satisfied for $\alpha \in \mathbb{Z}^{\ell}$.
- Mazzeo: has work prior to A\&G-R on a blown-up version, seems to have gone into A\&G-R
- Leichtnam \& Mazzeo \& Piazza
- Brüning
- Sergiu Moroianu
- Atiyah \& LeBrun

Other mathematical literature?

The problem can be interpreted as a stratified space with strata of dimensions m and $m-2$.
Much literature, but our case does not seem to be covered.

- Albin \& Gell-Redman 2016: incomplete edge space. Self-adjoint extensions, Fredholmness, index theory. This seems to fit. However, A\&G-R require a spectral condition, called "Witt condition" which is in our case only satisfied for $\alpha \in \mathbb{Z}^{\ell}$.
- Mazzeo: has work prior to A\&G-R on a blown-up version, seems to have gone into A\&G-R
- Leichtnam \& Mazzeo \& Piazza
- Brüning
- Sergiu Moroianu
- Atiyah \& LeBrun

It seems that we have to do the work ourselves.

Self-adjoint extensions. Again: the setting

(joint work in progress with Nadine Große, Freiburg)

- N a compact oriented submanifold of codimension 2 of M.
- $\pi:[M: N] \rightarrow M$ the blowup of M along N.
$S_{M} N=\partial[M: N]=\pi^{-1} N$.
$\hat{g}=\pi^{*} g: T_{p}[M: N] \otimes T_{p}[M: N] \rightarrow \mathbb{R}$ is degenerate along circle fibers of $S_{M} N \rightarrow N$
- $W \rightarrow[M: N]$ a suitable generalized \hat{g} spinor bundle

$$
N=\coprod_{j=1}^{\ell} N_{j}
$$

Monodromy $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$.
Parallel transport in W around N_{j} is $e^{2 \pi i \alpha_{j}}$.
The associated Dirac operator D is a formally self-adjoint 1 st order differential operator.

Minimal and maximal closed extensions

Idea: Try to follow Bär-Ballmann
$C_{c}^{\infty}(W):=\{$ sections of W with compact support in $[M: N]\}$
$C_{c c}^{\infty}(W):=\{$ sections of W with compact support in $M \backslash N\}$
The minimal Dirac operator $\bigsqcup_{\text {min }}$ is the Dirac operator whose domain is the closure of $C_{c c}^{\infty}(W)$ with respect to the graph norm

$$
\|\varphi\|_{D}^{2}:=\|\varphi\|_{L^{2}}^{2}+\|D \varphi\|_{L^{2}}^{2}
$$

$D_{\text {min }}$ is symmetric.

Minimal and maximal closed extensions

Idea: Try to follow Bär-Ballmann
$C_{c}^{\infty}(W):=\{$ sections of W with compact support in $[M: N]\}$
$C_{c c}^{\infty}(W):=\{$ sections of W with compact support in $M \backslash N\}$
The minimal Dirac operator $\bigsqcup_{\text {min }}$ is the Dirac operator whose domain is the closure of $C_{c c}^{\infty}(W)$ with respect to the graph norm

$$
\|\varphi\|_{D}^{2}:=\|\varphi\|_{L^{2}}^{2}+\|D \varphi\|_{L^{2}}^{2} .
$$

$D_{\text {min }}$ is symmetric.
$\varnothing_{\max }:=\square_{\min }^{*}$, symmetry implies $\operatorname{dom}\left(\Phi_{\min }\right) \subset \operatorname{dom}\left(\Phi_{\max }\right)$.

Minimal and maximal closed extensions

Idea: Try to follow Bär-Ballmann
$C_{c}^{\infty}(W):=\{$ sections of W with compact support in $[M: N]\}$
$C_{c c}^{\infty}(W):=\{$ sections of W with compact support in $M \backslash N\}$
The minimal Dirac operator $\bigsqcup_{\text {min }}$ is the Dirac operator whose domain is the closure of $C_{c c}^{\infty}(W)$ with respect to the graph norm

$$
\|\varphi\|_{D}^{2}:=\|\varphi\|_{L^{2}}^{2}+\|D \varphi\|_{L^{2}}^{2} .
$$

$D_{\text {min }}$ is symmetric.
$\Phi_{\max }:=D_{\min }^{*}$, symmetry implies $\operatorname{dom}\left(\Phi_{\min }\right) \subset \operatorname{dom}\left(D_{\max }\right)$.
Our Goal: Find domains \mathcal{D} with $\operatorname{dom}\left(D_{\min }\right) \subset \mathcal{D} \subset \operatorname{dom} D_{\max }$ such that

$$
\left.D_{\max }\right|_{\mathcal{D}}
$$

is self-adjoint.

First Surprise

$\operatorname{dom}\left(D_{\max }\right)$ is not the closure of $C_{c}^{\infty}(W)$.
Problem: $\square: C_{c}^{\infty}(W) \rightarrow C_{c}^{\infty}(W)$ not defined.

First Surprise

$\operatorname{dom}\left(D_{\max }\right)$ is not the closure of $C_{c}^{\infty}(W)$.
Problem: $\square: C_{c}^{\infty}(W) \rightarrow C_{c}^{\infty}(W)$ not defined.
Even worse: $D\left(\left.\varphi\right|_{M \backslash N}\right) \notin L^{2}$, unless if φ is parallel along the circles of $S_{M} N \rightarrow N$.

What about $\overline{\left\{\varphi \in C_{c}^{\infty}(W) \mid \varphi \text { parallel along circles }\right\}}$?

What about $\overline{\left\{\varphi \in C_{c}^{\infty}(W) \mid \varphi \text { parallel along circles }\right\}}$?
Case 1: $\alpha_{j} \notin \mathbb{Z}$. Such φ vanish on N_{j}.

$$
\overline{\left\{\varphi \in C_{C}^{\infty}(W) \mid \varphi \text { parallel along circle }\right\}} \subset \operatorname{dom}\left(\bigsqcup_{\min }\right)
$$

(more precisely: a corresponding local statement close to N_{j})

What about $\overline{\left\{\varphi \in C_{c}^{\infty}(W) \mid \varphi \text { parallel along circles }\right\}}$?
Case 1: $\alpha_{j} \notin \mathbb{Z}$. Such φ vanish on N_{j}.

$$
\overline{\left\{\varphi \in C_{C}^{\infty}(W) \mid \varphi \text { parallel along circle }\right\}} \subset \operatorname{dom}\left(D_{\min }\right)
$$

(more precisely: a corresponding local statement close to N_{j})
Case 2: $\alpha_{j} \in \mathbb{Z}$. Then we have

$$
\operatorname{dom}\left(D_{\max }\right)=\operatorname{dom}\left(D_{\min }\right)
$$

i.e. $D_{\min }$ is self-adjoint!

Why this?
Thus: $C_{c}^{\infty}(W)$ seems to be useless for us!

The case $\alpha \in \mathbb{Z}^{\ell}$

In this case $W=\pi^{*}(\mathcal{W})$.
Lemma 1.
Let M be a complete manifold with generalized spinor bundle \mathcal{W}. Let $\mathrm{H}_{\not \square}^{1}(M, \mathcal{W})$ be the completion of $C_{c}^{\infty}(M, \mathcal{W})$ w.r.t. the graph norm of D. If $N \subset M$ is (a compact submanifold) of codimension ≥ 2, then $C_{c}^{\infty}(M \backslash N, \mathcal{W})$ is dense in $\mathrm{H}_{\square}^{1}(M, \mathcal{W})$. Thus: " N is invisible."

Lemma 1.

Let M be a complete manifold with generalized spinor bundle \mathcal{W}. Let $\mathrm{H}_{\square}^{1}(M, \mathcal{W})$ be the completion of $C_{C}^{\infty}(M, \mathcal{W})$ w.r.t. the graph norm of D. If $N \subset M$ is (a compact submanifold) of codimension ≥ 2, then $C_{C}^{\infty}(M \backslash N, \mathcal{W})$ is dense in $\mathrm{H}_{\square}^{1}(M, \mathcal{W})$.

Proof.

Wlog codimension 2.
Let $\varphi \in C_{c}^{\infty}(M, \mathcal{W})$.
Take a logarithmic cut-off

$$
\chi_{k, \epsilon}(x):= \begin{cases}0 & \text { for } r(x) \leq e^{-k} \epsilon, \tag{1}\\ \frac{1}{k} \log \frac{r(x) e^{k}}{\epsilon} & \text { for } e^{-k} \epsilon \leq r(x) \leq \epsilon, \\ 1 & \text { for } r(x) \geq \epsilon .\end{cases}
$$

Then

$$
\begin{equation*}
\left\|\nabla\left(\chi_{k, \epsilon} \varphi\right)-\nabla \varphi\right\|_{L^{2}} \leq C(\epsilon+\sqrt{k}) . \tag{2}
\end{equation*}
$$

For $\epsilon=k^{-1 / 2} \rightarrow 0$ we have $\chi_{k, \epsilon} \varphi \rightarrow \varphi$.

Some positive results (without proofs)

Lemma.

Suppose that $\varphi \in \operatorname{dom}\left(\square_{\max }\right)$ is bounded on a neighbourhood of N. Then $\varphi \in \operatorname{dom}\left(D_{\min }\right)$.

Lemma.

Assume that the geometry of g and W is bounded, D coercive at infinity. Then on dom $\left(D_{\min }\right)$ the graph-norm for D is equivalent to the classical H^{1}-norm, i.e. the graph norm for ∇.

Lemma.

For an L_{loc}^{1}-section φ of W we define $D \varphi$ in the distributional sense where as test functions we use the compactly supported smooth sections of $W^{*} \otimes \bigwedge^{n} T^{*} M$. Then $\operatorname{dom}\left(D_{\max }\right)$ is the vector space of all $L_{\text {loc }}^{1}$-section of W for which φ and $D \varphi$ are in L^{2}.

Abstract extension space

$$
\check{Q}:=\frac{\operatorname{dom} \Phi_{\max }}{\operatorname{dom} \Phi_{\min }}
$$

abstract extension space with graph norm.
For $\varphi, \psi \in \operatorname{dom}\left(ゆ_{\max }\right)$ we define

$$
\check{b}([\varphi],[\psi]):=\int_{M \backslash N}(\langle D \varphi, \psi\rangle-\langle\varphi, \not D \psi\rangle) d v^{g} .
$$

It is a well-defined, non-degenerate skew-hermitian form on \check{Q}. Goals: Identify this as H -sections of a bundle over N. Show that the pairing is perfect. $\{$ self-adj. bdy cond. $\} \stackrel{1: 1}{\longleftrightarrow}\{$ Lagrangian subspaces of $(\check{Q}, \check{b})\}$

The normal volume element

Let $\left(e_{1}, e_{2}\right)$ be a positively oriented orthornormal frame of the normal bundle $\nu_{M} N$ at p.
We define $\omega_{\text {nor }}:=e_{1} \cdot e_{2} \in \operatorname{End}\left(W_{p}\right)$.
Extend smoothly for p in neigborhood of N. Decompose into $\omega_{\text {nor }}$-eigenspace bundles for eigenvalues $\pm i$.

$$
\begin{gathered}
W=W_{+} \oplus W_{-} \\
D=\underbrace{D^{\text {nor }}}_{\text {odd }}+\underbrace{\partial_{r} \cdot D^{N}}_{\text {even }}+\text { l.o.t. }
\end{gathered}
$$

Portman-Sok-Solovej boundary condition

Choose a sign $\epsilon_{j} \in\{ \pm 1\}$ for each $j=1, \ldots, \ell$.
Close to N_{j} the boundary condition is

$$
\mathcal{B}=\left\{\varphi \in \operatorname{dom}\left(D_{\max }\right) \mid\left(\omega_{\text {nor }}+i \epsilon_{j}\right) \cdot \varphi \in \operatorname{dom}\left(D_{\max }\right)\right\} .
$$

Theorem 2 (PSS \approx 2017).
This is a self-adjoint boundary condition in the case $M=\mathbb{S}^{3}$, N a link, L flat.
We extend this the whole setting, but there are many more self-adjoint extensions.

Continuity in α

Is the PSS boundary condition continuous in α ?
The PSS boundary condition is

- continous for $\epsilon_{j} \alpha_{j} \nearrow 0 \bmod \mathbb{Z}$,
- but non-continuous for $\epsilon_{j} \alpha_{j} \searrow 0 \bmod \mathbb{Z}$.

General boundary conditions
The H -spaces have a both-sided regularity incontinuity at $\alpha_{j} \equiv 1 / 2 \bmod 2$

Importance of continuity
Spectral flow arguments
Fredholm index is not constant at $\alpha_{j} \equiv 0 \bmod \mathbb{Z}$.

2-dimensional model space

Assume $M=\mathbb{C} \ni z, N=\{0\}, \Sigma=\underline{\mathbb{C}^{2}}=\Sigma_{+} \oplus \Sigma_{-}$
L flat bundle over [$\mathbb{C}:\{0\}]$, monodromy α
Then $\omega_{\text {nor }}$ is the standard volume element.

$$
\not D=D^{\text {nor }}=\sqrt{2}\left(\begin{array}{cc}
0 & \bar{\partial} \\
-\partial & 0
\end{array}\right)
$$

$\frac{z^{-\alpha}}{|z|^{-\alpha}}$ represents a nowhere vanishing smooth section of L. Ansatz:

$$
\Phi_{\beta, \gamma}^{+}:=\binom{z^{\beta} \bar{z}^{\gamma}}{0}, \quad \Phi_{\beta, \gamma}^{-}:=\binom{0}{z^{\beta} \bar{z}^{\gamma}}
$$

where β and γ over real numbers with $\beta-\gamma+\alpha \in \mathbb{Z}$.
$\Phi_{\beta, \gamma}^{ \pm} \in L_{\text {loc }}^{2}$ iff $\beta+\gamma>-1$

$$
D \Phi_{\beta, \gamma}^{+}=-\sqrt{2} \beta \Phi_{\beta-1, \gamma}^{-}, \quad D \Phi_{\beta, \gamma}^{-}=\sqrt{2} \gamma \Phi_{\beta, \gamma-1}^{+}
$$

Lemma.

The condition that $\Phi_{\beta, \gamma}^{ \pm} \in \operatorname{dom}\left(\Phi_{\text {max }}\right)$ is characterized as follows ("locally around 0 ").
(1) Suppose $\beta \neq 0$ and $\gamma \neq 0$. Then $\Phi_{\beta, \gamma}^{ \pm} \in \operatorname{dom}\left(\Phi_{\max }\right)$ if and only $\beta+\gamma>0$.
(2) Suppose $\beta=0$ and $\gamma \neq 0$. Then $\Phi_{0, \gamma}^{+} \in \operatorname{dom}\left(\Phi_{\max }\right)$ if and only if $\gamma>-1$, and $\Phi_{0, \gamma}^{-} \in \operatorname{dom}\left(ゆ_{\max }\right)$ if and only if $\gamma>0$.
(3) Suppose $\beta \neq 0$ and $\gamma=0$. Then $\Phi_{\beta, 0}^{+} \in \operatorname{dom}\left(\Phi_{\max }\right)$ if and only if $\beta>0$, and $\Phi_{\beta, 0}^{-} \in \operatorname{dom}\left(\Phi_{\max }\right)$ if and only if $\beta>-1$.
(4) Suppose $\beta=\gamma=0 . \Phi_{0,0}^{ \pm} \in \operatorname{dom}\left(\Phi_{\max }\right)=\operatorname{dom}\left(\Phi_{\min }\right)$.
$\alpha \in(0,1)$: Then elements in $\operatorname{dom}\left(\Phi_{\max }\right)$ are of the form

$$
\binom{\bar{z}^{\alpha-1} \varphi_{+}}{z^{-\alpha} \varphi_{-}}+\operatorname{dom}\left(ゆ_{\min }\right) .
$$

Higher dimensions：Extension map and Trace map

Now：For simplicity of presentation let N be connected． Idea：The trace map is given by

$$
\begin{aligned}
& \mathcal{R}: \operatorname{dom}\left(ゆ_{\max }\right) \rightarrow \Gamma\left(W \mid S_{S_{M} N}\right) \\
& \left.\varphi \mapsto \lim _{r \searrow 0}\left(\begin{array}{cc}
r^{1-\alpha} & 0 \\
0 & r^{\alpha}
\end{array}\right) \varphi\right|_{\partial U_{r}(N)} \\
& \check{b}([\varphi],[\psi]) \stackrel{\text { def }}{=} \int_{M \backslash N}(\langle ゆ \varphi, \psi\rangle-\langle\varphi, \not \emptyset \psi\rangle) d \nu^{g} \\
& =\boldsymbol{B}(\mathcal{R}(\varphi), \mathcal{R}(\psi))
\end{aligned}
$$

where $B(\Phi, \Psi)=\int_{S_{M} N}\left\langle\Phi, \partial_{r} \cdot \Psi\right\rangle d \mu$ and where μ is the S^{1}－equivariant measure on $S_{M} N$ with $\pi_{*} \mu=$ dvol N ．

Wish list

Extension operator

$$
\mathcal{E}: \check{H}_{\alpha}\left(\left.W\right|_{S_{M} N}\right):=\operatorname{Image}(\mathcal{R}) \rightarrow \operatorname{dom}\left(\Phi_{\max }\right)
$$

Wishes:

$$
\begin{aligned}
\mathcal{R} \circ \mathcal{E} & =\mathrm{Id} \\
\check{b}(\varphi, \mathcal{E}(\Psi)) & =B(\mathcal{R}(\varphi), \Psi)
\end{aligned}
$$

B is a perfect pairing on $\check{\mathrm{H}}_{\alpha}\left(\left.W\right|_{S_{M} N}\right)$.
To determine $\check{\mathrm{H}}_{\alpha}\left(W \mid S_{M} N\right)$ we have to consider

- S^{1}-equivariance
- regularity along N

Equivariance

Let $\alpha \in(0,1)$
$S^{1} \subset \mathbb{C}$ acts on the S^{1}-principle bundle $S_{M} N \rightarrow N$:
$\rho: S^{1} \rightarrow \operatorname{Diff}\left(S_{M} N\right)$.
Then $K:=d \rho(i)$ a vector field on $S_{M} N$.
We define

$$
\begin{aligned}
\Gamma_{\alpha}\left(\left.W^{+}\right|_{s_{M} N}\right) & :=\left\{\Phi \in C^{\infty}\left(\left.W^{+}\right|_{s_{M} N}\right) \text { with } \nabla_{K} \Phi=i(1-\alpha) \Phi\right\} \\
\Gamma_{\alpha}\left(\left.W^{-}\right|_{s_{M} N}\right) & :=\left\{\Phi \in C^{\infty}\left(\left.W^{-}\right|_{S_{M} N}\right) \text { with } \nabla_{K} \Phi=-i \alpha \Phi\right\} \\
\Gamma_{\alpha}\left(\left.W\right|_{S_{M} N}\right) & :=\Gamma_{\alpha}\left(\left.W^{+}\right|_{s_{M} N}\right) \oplus \Gamma_{\alpha}\left(\left.W^{-}\right|_{S_{M} N}\right)
\end{aligned}
$$

$\Gamma_{\alpha}\left(\left.W\right|_{S_{M} N}\right)$ is the space of sections of a vector bundle over N.

Density and regularity

Relevance: Let $\Phi_{ \pm} \in \Gamma_{\alpha}\left(\left.W^{ \pm}\right|_{S_{M} N}\right)$.
Then

$$
\chi(r)\left(r^{\alpha-1} \Phi_{+}+r^{-\alpha} \Phi_{-}\right) \in \operatorname{dom}\left(D_{\max }\right)
$$

Up to l.o.t. and $\nabla \chi$-terms it is in the kernel of the normal Dirac operator $\nabla^{\text {nor }}$.
$\Gamma_{\alpha}\left(\left.W\right|_{S_{M} N}\right)$ is dense in the Hilbert space $\check{H}_{\alpha}\left(\left.W\right|_{S_{M} N}\right)$.
To explain the norm on the space we will discuss

- The canonical metric on the normal bundle
- The N-Dirac operator
- The $\check{\mathrm{H}}_{\alpha}$-spaces

Canonical metric on the normal bundle

To understand codimension 1 boundary conditions, one has to understand half-cylinders $N \times[0, \infty)$ first. In fact, half cylinders are a special case of the (blown-up) canonical metric on the normal bundle.

Let $N \subset M$ be of codimension k. The canonical metric is a Riemannian metric on the total space of $\pi: \nu_{M} N \rightarrow N$ such that

- π is a Riemannian submersion,
- the horizontal spaces \mathcal{H}_{p} are given by the connection on $\nu_{M} N \rightarrow N$,
- for $V \in \nu_{M}$ the vertical space in V is naturally isometric to $\left.\nu_{M} N\right|_{\pi(V)}$.
The Dirac operator \bigsqcup_{0} on $\left(\nu_{M} N, g_{\text {can }}\right)$ is our model operator.

The N-Dirac operator

The horizontal space also define a distribution \mathcal{H} of codimension $k-1$ in $S_{M} N$.
For an onb e_{1}, \ldots, e_{m-k} of \mathcal{H}_{p} and $\varphi \in \Gamma\left(W \mid S_{S_{M} N}\right)$ we define the N-Dirac operator as

$$
\left.\left(D^{N} \varphi\right)\right|_{p}:=-\sum_{j=1}^{m-k} \partial_{r} \cdot e_{j} \cdot \nabla_{e_{j}} \varphi .
$$

Lemma.
The operator \square^{N} is an odd, formally self-adjoint, elliptic operator of Dirac type on N.

Back to our codimension 2 setting

On the model space we have

$$
\begin{aligned}
D_{0} & =\underbrace{\partial_{r} \cdot \nabla_{r}+\frac{K}{r} \cdot \nabla_{K / r}}_{\text {D}^{\text {nor }}}+\partial_{r} \cdot \not D^{N} \\
& =\partial_{r} \cdot\left(\nabla_{r}-\omega_{\text {nor }} \cdot \nabla_{K / r}+D^{N}\right)
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left(\nabla_{r}-\omega_{\text {nor }} \cdot \nabla_{K / r}\right)\left(r^{\alpha-1} \varphi_{+}\right) & =0 \\
\left(\nabla_{r}-\omega_{\text {nor }} \cdot \nabla_{K / r}\right)\left(r^{-\alpha} \varphi_{-}\right) & =0
\end{aligned}
$$

Idea: Analyse this in a spectral decomposition for \square^{N} This will give us the H -space.

The $\check{\mathrm{H}}_{\alpha}$ spaces

"Theorem".
Let $\alpha \in(0,1)$. We obtain a splitting

$$
\begin{aligned}
\Gamma_{\alpha}\left(\left.W\right|_{S_{M} N}\right) & =V_{+} \oplus V_{-} \\
\check{H}_{\alpha}\left(\left.W\right|_{S_{M} N}\right) & ={\overline{V_{+}}}^{H^{\beta}} \oplus{\overline{V_{-}}}^{H^{-\beta}}
\end{aligned}
$$

where $\beta:=\min \{\alpha, 1-\alpha\}$.
There is a surjective trace map $\mathcal{R}: \operatorname{dom}\left(D_{\max }\right) \rightarrow \check{\mathrm{H}}_{\alpha}\left(\left.W\right|_{S_{M} N}\right)$
with kernel $\operatorname{dom}\left(D_{\min }\right)$ and an injective extension map
$\mathcal{E}: \check{\mathrm{H}}_{\alpha}\left(\left.W\right|_{S_{M} N}\right) \rightarrow \operatorname{dom}\left(D_{\max }\right)$ with

$$
\begin{aligned}
\mathcal{R} \circ \mathcal{E} & =\text { Id } \\
\check{b}(\varphi, \mathcal{E}(\Psi)) & =B(\mathcal{R}(\varphi), \Psi)
\end{aligned}
$$

B is a perfect pairing on $\check{\mathrm{H}}_{\alpha}\left(\left.W\right|_{S_{M} N}\right)$.
$V_{-}:=\left\{\Phi \in \Gamma_{\alpha}\left(\left.W\right|_{S_{M} N}\right) \mid \Phi\right.$ "extends" to a D_{0}-harmonic L^{2}-spinor $l^{U R}$

The Ansatz

Attention: \ddot{D}^{N} anticommutes with $\omega_{\text {nor }}$.
We assume $\square^{N} \Phi=\lambda \Phi, \Phi=\left(\Phi_{+}, \Phi_{-}\right)$.
For $r \rightarrow \infty$: \mathbb{D}^{N} dominates, thus $L^{2} \Leftrightarrow \lambda>0$
For $r \rightarrow 0: \nabla_{K / r}$ dominates

Ansatz

We search for a solution asymptotic to $\exp (-\lambda r) \Phi$

$$
\varphi=f_{+}(r) \Phi_{+}+f_{-}(r) \Phi_{-}, \quad f=\left(f_{+}, f_{-}\right)
$$

$D_{0} \varphi=0$ then translates into

$$
0=f^{\prime}(r)+\frac{1}{r}\left(\begin{array}{cc}
1-\alpha & 0 \\
0 & \alpha
\end{array}\right) f(r)+\lambda f(r)
$$

The asymptotics for $r \rightarrow 0$ of solutions of this ODE depend strongly on the sign of $\alpha-\frac{1}{2}$.

The $\check{\mathrm{H}}_{\alpha}$ spaces

For $\alpha \in(0,1 / 2)$: for a smooth section $\Phi=\left(\Phi_{+}, \Phi_{-}\right)$of $\left.W\right|_{\mathbb{S}_{M} N}$

$$
\|\Phi\|_{\mathrm{H}}^{2}:=\left\|\Phi_{+}\right\|_{\mathrm{H}^{-\alpha}}^{2}+\left\|\Phi_{-}\right\|_{\mathrm{H}^{\alpha}}^{2}
$$

For $\alpha \in(1 / 2,1)$: for a smooth section $\Phi=\left(\Phi_{+}, \Phi_{-}\right)$of $\left.W\right|_{\mathbb{S}_{M} N}$

$$
\|\Phi\|_{\hat{H}}^{2}:=\left\|\Phi_{+}\right\|_{H^{1-\alpha}}^{2}+\left\|\Phi_{-}\right\|_{H^{\alpha-1}}^{2}
$$

For $\alpha=1 / 2$: the space V_{-}is spanned by the eigenspinors of D^{N} to the positive eigenvalues.

The extension map

On V_{-}it is obtained by solving the ODE backwards: from $r \rightarrow 0$ to $r \rightarrow \infty$.

$$
V_{-} \rightarrow \operatorname{dom}\left(D_{\max }\right)
$$

What do we do with V_{+}? (for simplicity $\alpha \neq 1 / 2$)
Extend $\Phi \in V_{+}$by

$$
\mathcal{E}(\Phi):=r^{\beta-1} \exp \left(-\left|D^{N}\right| r\right) \Phi
$$

Then $\bigsqcup_{0} \varphi \neq 0$, but the L^{2}-norm of $D_{0} \varphi$ remains sufficiently well-controlled.

Why is it impossible to find an extension on a larger space \tilde{H} ? Why is it impossible that Image \mathcal{R} is larger?
(Until now we only have seen arguments for $\check{\mathrm{H}}_{\alpha} \subseteq$ Image \mathcal{R} !)

Why is it impossible to find an extension on a larger space \tilde{H} ? Why is it impossible that Image \mathcal{R} is larger?
(Until now we only have seen arguments for $\check{\mathrm{H}}_{\alpha} \subseteq$ Image \mathcal{R} !)
Answer: As we have found a space, on which B is a perfect pairing!
Consider the continuous map

$$
\Psi \mapsto b(\varphi, \mathcal{E}(\Psi))=B(\mathcal{R}(\varphi), \Psi)
$$

Thus $B(\mathcal{R}(\varphi), \bullet) \in \widetilde{\mathbf{H}}^{*}$

$$
\Longrightarrow \quad \mathcal{R}(\varphi) \subseteq \widetilde{\mathrm{H}}^{* B} \subseteq \check{\mathrm{H}}^{* B}=\check{\mathrm{H}} .
$$

So, if $\check{\mathrm{H}} \subsetneq \tilde{\mathrm{H}}$ is a strict inclusion, then $\widetilde{\mathrm{H}}^{* B} \subsetneq \check{\mathrm{H}}$, thus we get a contradiction to $\mathcal{R} \circ \mathcal{E}=\mathrm{Id}$.

