Topology of spaces of metrics generalizing positive scalar curvature

Overview over joint work with Klaus Kröncke, Hartmut Weiß, Frederik Witt, Olaf Müller and Jonathan Glöckle

B. Ammann¹

¹Universität Regensburg, Germany

A-Fri-Ka Riemannian Topology Research Seminar, 2021

Plan

I. Riemannian metrics of psc and nnsc

II. Strict DEC on Lorentzian initial data

III. DEC and the kernel of the Dirac-Witten operator

Recap: The Cauchy problem for Lorentzian manifolds with parallel spinors

DEC – Conclusions

Slides available on http://www.mathematik.uni-regensburg.de/ ammann/talks/2021A-Fri-Ka-handout.pdf Or http://www.berndammann.de/talks.

I. Riemannian metrics of psc and nnsc

The subtle difference between scal > 0 and $scal \ge 0$

Let *M* be a compact spin manifold. For any Riemannian metric *g* we have a Dirac operator $\mathcal{D}: \Gamma(\Sigma M) \rightarrow \Gamma(\Sigma M)$. It is an elliptic self-adjoint operator, and thus a Fredholm operator.

Schrödinger-Lichnerowicz formula:

$$\not D^2 \varphi = \nabla^* \nabla \varphi + \frac{\operatorname{scal}}{4} \varphi.$$

If scal > 0, then D is invertible.

This allows many applications: obstructions to positive scalar curvature, information about the moduli space of psc metrics.

Questions for our talk:

- What about scal ≥ 0?
- Why are scal > 0 and scal ≥ 0 interesting?
- How far do we get with Lorentzian analogues?

Non-negative scalar curvature

Now let *M* be a compact connected spin manifold, and let *g* be a Riemannian metric with scal $^{g} \ge 0$. Assume $D \varphi = 0$, $\varphi \neq 0$. Then

$$0 = \int_{M} \langle \mathcal{D}^{2} \varphi, \varphi \rangle = \int_{M} \underbrace{\|\nabla \varphi\|^{2}}_{\geq 0} + \frac{1}{4} \int_{M} \underbrace{\operatorname{scal}^{g}}_{\geq 0} \underbrace{\|\varphi\|^{2}}_{\geq 0}.$$

Thus we have zero everywhere, e.g. $\nabla \varphi = 0$. (A parallel spinor)

 \implies Strong implications.

Implications from parallel spinors, Part 1

Let (M, g) be a Riemannian or a Lorentzian connected spin manifold.

Assume that $\varphi \neq 0$ is a parallel spinor.

- $\Rightarrow R_{X,Y}\varphi = 0$
- $\Rightarrow \quad \mathbf{0} = \sum \pm \mathbf{e}_i \cdot \mathbf{R}_{\mathbf{e}_i, \mathbf{Y}} \varphi \stackrel{!}{=} \frac{1}{2} \operatorname{Ric}(\mathbf{Y}) \cdot \varphi$
- $\Rightarrow g(\operatorname{Ric}(Y), \operatorname{Ric}(Y))\varphi = -\operatorname{Ric}(Y) \cdot \operatorname{Ric}(Y) \cdot \varphi = 0$

In the Riemannian case: Ric = 0

Theorem

If a connected Riemannian spin manifold (M,g) carries parallel spinor $\varphi \neq 0$, then $\operatorname{Ric}^{g} = 0$.

Note: in the Lorentzian case we may only conclude that $\operatorname{Ric}(Y)$ is lightlike.

Implications from parallel spinors, Part 1, cont'd

From the Cheeger-Gromoll splitting theorem it follows: If (M, g) is a compact Ricci-flat manifold, then it has a finite cover

$$(\hat{M}, \hat{h}) = (N, h) \times (\mathbb{R}^k / \Gamma), \quad \pi_1(N) = 1.$$

In particular, $\pi_1(M)$ is virtually abelian (i.e. it contains an abelian subgroup of finite index).

Conclusion

If M is a compact spin manifold, and $\pi_1(M)$ is not virtually abelian, then we obtain

$$\begin{array}{rcl} \mathcal{R}^{\geq}(M) & \to & \operatorname{Inv-Self-Adj} \\ g & \mapsto & \not\!\!\!D^g \end{array}$$

 $\mathcal{R}^{\geq}(M) := \{g \mid \text{scal }^g \geq 0\},\$ Inv-Self-Adj := {invert. self-adj. ops. with "some" additional structure}

Implications from parallel spinors, Part 1, cont'd

Using the map

$$\begin{array}{rcl} \mathcal{R}^{\geq}(M) & \to & \text{Inv-Self-Adj} \\ g & \mapsto & {\not\!\!D}^g \end{array}$$

we get the usual conlusions for psc, e.g.:

- If $0 \neq \text{ind} (M) \in \text{KO}_{\dim M}(pt)$, then $\mathcal{R}^{\geq}(M) = \emptyset$.
- One can use the family index theorem to find non-trivial elements in π_k(R[≥](M)). (work for psc by Hitchin, Crowley–Hanke–Schick–Steimle, Botvinnik–Ebert–Randal-Williams)

Implications from parallel spinors, Part 2

If (M, g) carries a parallel spinor, then it has special holonomy.

 $p \in M$: Hol $(M, g) := \{$ Parallel transport along loops $p \rightsquigarrow p \} \subset O(n)$

If there is a parallel spinor, then there is a finite cover $\hat{M} \rightarrow M$ such that

$$\hat{M}=N_1\times\ldots\times N_k,$$

 $\mathsf{Hol}(N_i) \in \Big\{ \{1\}, \mathsf{SU}(\ell), \mathsf{Sp}(\ell), G_2, \mathsf{Spin}(7) \Big\}.$

⇒ obstructions on Betti-numbers, e.g. (for dim $M \ge 4$): $b_4(M) \ne 0$ or $(b_3(\hat{M}) \ne 0$ and $b_6(\hat{M}) \ne 0 \dots b_{3 \dim M/7}(\hat{M}) \ne 0$) If no metrics with par. spinors exists: conclusions as in Part 1.

Implications from parallel spinors, Part 3

If (M,g) carries a parallel spinor, then it is a **stable** Ricci-flat metric.

g cannot be deformed to a metric of positive scalar curvature

Theorem (Schick–Wraith)

Let *M* be a closed manifold with a psc metric g_0 , and let $\mathcal{R}^{\geq}(M)_{g_0}$ be the path-connected component of g_0 in $\mathcal{R}^{\geq}(M)$. Then we get a map

$$\begin{array}{rcl} \mathcal{R}^{\geq}(M)_{g_0} & \to & \text{Inv-Self-Adj} \\ g & \mapsto & {\not\!\!D}^g \end{array}$$

Conclusion Nontrivial homotopy groups $\pi_k (\mathcal{R}^{\geq}(M)_{g_0}), k \geq 1$.

Implications from parallel spinors, Part 3, cont'd

Important ingredient: good understanding of $\mathcal{R}_{\parallel}(M) \coloneqq \{g \in \mathcal{R}(M) \mid g \text{ has a parallel spinor}\}$

- $\mathcal{R}_{\parallel}(M)$ is a Fréchet submanifold of $\Gamma(T^*M \odot T^*M)$
- Smooth, finite-dim. premoduli space $\mathcal{R}_{\parallel}(M)/\operatorname{Diff}_{0}(M)$
- No psc metric in a neighborhood of $\mathcal{R}_{\parallel}(M)$

The case of irreducible holonomy, $\pi_1(M) = 1$ is well-understood due to work by McK Wang, Tian–Todorov, Joyce, Dai–G. Wang–Wei, Nordstroem,...

Additional effort required for **reducible holonomy** (or $\pi_1(M) \neq 1$) Kröncke's stability (2015) & A.–Kröncke–Weiß–Witt (2019)

Goals:

- What is the motivation for understanding scal ≥ 0 coming from general relativity?
- Are there Lorentzian analogues?

We will Lorentzian see analogues for

- scal > 0, scal ≥ 0
- Dirac operators
- parallel spinors
- Methods to detect topology in the moduli space
- Analogues to implications for parallel spinors, Part 1 and 2 However, no analogue to stability (yet?).
 Obstructions do not seem optimal yet.

II. Strict DEC on Lorentzian initial data

Dominant energy condition

Let *h* be a Lorentzian metric on *N* Energy-momentum tensor or Einstein tensor

$$T^h \coloneqq \operatorname{Ric}^h - \frac{1}{2}\operatorname{scal} {}^h h$$

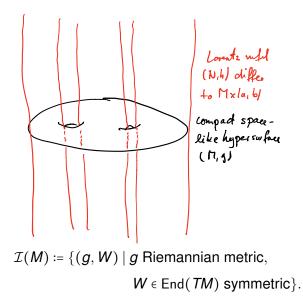
We say that *h* satisfies the dominant energy condition in $x \in N$ if for all causal future oriented vectors $X, Y \in T_x N$:

$$T(X,Y) \ge 0. \tag{DEC}$$

Physical interpretation (Einstein equation):

Non-negative mass density of matter fields.

Assume: (N, h) is time- and space-oriented, globally hyperbolic, spin, compact Cauchy hypersurface



DEC on spacelike hypersurfaces

If *M* is a space-like hypersurface with induced metric *g*, and if ν is a future-oriented unit normal, then we define: Energy density $\rho := T^h(\nu, \nu) = \frac{1}{2} \left(\operatorname{scal}^g + (\operatorname{tr} W)^2 - \operatorname{tr}(W^2) \right)$ Momentum density $j := T^h(\nu, \cdot)|_{T_xM} = \operatorname{div} W - \operatorname{dtr} W$ DEC for *h* implies $\rho \ge |j|$.

Definition

Let g be a Riemannian metric and W a g-symmetric endomorphism section. We say that (g, W) satisfies

• the dominant energy condition if $\rho \ge |j|$ (DEC)

 $\mathcal{I}^{\geq}(M) \coloneqq \{(g, W) \in \mathcal{I}(M) \text{ satisfying (DEC)}\}.$

► the strict dominant energy condition if ρ > |j| (DEC_>)

 $\mathcal{I}^{>}(M) \coloneqq \{(g, W) \in \mathcal{I}(M) \text{ satisfying } (\mathsf{DEC}_{>})\}.$

The inclusion $\mathcal{R}^{\geq}(M) \to \mathcal{I}^{\geq}(M)$

$$\mathcal{R}(M) \hookrightarrow \mathcal{I}(M), g \mapsto (g, 0)$$

$$\mathcal{R}^{>}(M) := \{g \in \mathcal{R} \mid \text{scal} \ ^{g} \ge 0\} = \mathcal{R}(M) \cap \mathcal{I}^{>}(M)$$

$$\mathcal{R}^{>}(M) := \{g \in \mathcal{R} \mid \text{scal} \ ^{g} > 0\} = \mathcal{R}(M) \cap \mathcal{I}^{>}(M)$$

- ► This is the main reason why Riemannian metrics with scal ≥ 0 (or scal > 0) play a central role in general relativity.
- Can we control the topology of *I*[≥](*M*)?
- First important step: understand *I*[>](*M*) (J. Glöckle, arXiv:1906.00099)

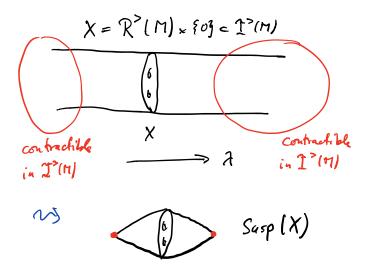
Glöckle's work on $\mathcal{I}^{\geq}(M)$

A lot is known about $\mathcal{I}^{>}(M)$. In particular, we have $(g, \lambda \operatorname{Id}) \in \mathcal{I}^{>}(M)$ if

- $g \in \mathcal{R}^{>}(M)$ and $\lambda \in \mathbb{R}$, or
- $g \in \mathcal{R}^{\geq}(M)$ and $\lambda \in \mathbb{R} \setminus \{0\}$, or
- $g \in \mathcal{R}(M)$ and $|\lambda| \gg 0$.

We get a map $\operatorname{Susp}(\mathcal{R}^{>}(M)) \to \mathcal{I}^{>}(M)$.

$$\operatorname{Susp}(\mathcal{R}^{>}(M)) = (\mathcal{R}^{>}(M) \times [-1, 1]/M \times \{-1\})/M \times \{1\}.$$

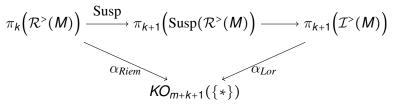


The Lorentzian α -index For any $\Psi: S^{k+1} \to \mathcal{I}^{>}(M)$ J. Glöckle constructs

$$\alpha_{\mathrm{Lor}}(\Psi) \in \mathrm{KO}_{m+k+1}(\{*\}) = \begin{cases} \mathbb{Z} & \text{if } m+k+1 \in 4\mathbb{N} \\ \mathbb{Z}/2 & \text{if } m+k+1 \in 8\mathbb{N}+1 \\ & \text{or } m+k+1 \in 8\mathbb{N}+2 \\ 0 & \text{else} \end{cases}$$

 $m = \dim M$.

Theorem (J. Glöckle 2019) The diagram



commutes.

Key technique in Glöckle's article: The Dirac-Witten operator

Literature: Witten 1981, Parker-Taubes, Hijazi-Zhang, ..., Glöckle 2019.

Restrict the spinor bundle ΣN from (N, h) to (M, g). As spinor module $\Sigma N|_M$ is one or two copies of ΣM . However:

scalar product $\langle\!\langle \cdot, \cdot \rangle\!\rangle$ on ΣN is indefinite (splitt signature), scalar product $\langle \cdot, \cdot \rangle$ on ΣM positive definite. They are related by

$$\langle \varphi, \psi \rangle = \langle \! \langle \nu \cdot \varphi, \psi \rangle \! \rangle.$$

The connections differ:

$$\nabla_X^N \varphi = \nabla_X^M \varphi - \frac{1}{2} \nu \cdot W(X) \cdot \varphi$$

Dirac-Witten-Operator

$$\mathbf{D}^{(g,W)}\varphi = \sum_{j=1}^{m} \mathbf{e}_{j} \cdot \nabla_{\mathbf{e}_{j}}^{N}\varphi$$

where (e_1, \ldots, e_m) is a locally defined orthonorm. frame of TM.

 $p^{(g,W)}$ is self-adjoint and Fredholm.

Schrödinger-Lichnerowicz formula:

$$\left({{ { \! D}}^{\left({g,W} \right)}} \right)^2 = (\nabla^N)^* \nabla^N + \frac{1}{2} (\rho - \nu \cdot j^{\sharp} \cdot),$$

The * is taken on *M* with respect to $\langle \cdot, \cdot \rangle$. Recall:

Energy density $\rho \coloneqq T^h(\nu, \nu) = \frac{1}{2} \left(\operatorname{scal}^g + (\operatorname{tr} W)^2 - \operatorname{tr}(W^2) \right)$ Momentum density $j \coloneqq T^h(\nu, \cdot)|_{T_xM} = \operatorname{div} W - \operatorname{dtr} W$ DEC for *h* implies $\rho \ge |j|$.

This implies that $\not D^{(g,W)}$ is invertible if $(g,W) \in \mathcal{I}^{>}(M)$. As a consequence Glöckle can use index theoretical methods.

Understanding $\mathcal{I}^{\geq}(M)$

In the following diagram we assume $k \ge 1$ and that the base point is g_0 resp. $(g_0, 0)$ where g_0 has positive scalar curvature.

Index theoretically determined non-trivial homotopy groups survive in the upper right and in the lower left corner. What about the lower right corner?

Proposition (Ammann, Glöckle (2021))

Assume that *M* is a connected closed spin manifold and $(g, W) \in \mathcal{I}^{\geq}(M)$. We assume that $\varphi \in \ker \mathcal{D}^{(g,W)} \smallsetminus \{0\}$.

Then g, W, φ provides initial data for a Lorentzian manifold with a parallel spinor.

In fact φ : is a parallel section of $\Sigma N|_M \to M$.

Recap: The Cauchy problem for Lorentzian manifolds with parallel spinors

Work by H. Baum, T. Leistner, A. Lischewski Let (N, h) be a space- and time-oriented Lorentzian spin manifold with a parallel spinor Φ . The Dirac current of (N, h, Φ) is the vector field V_{Φ} with

$$h(X, V_{\Phi}) = -\langle\!\langle X \cdot \Phi, \Phi \rangle\!\rangle \quad \forall X \in TN.$$

As Φ is parallel, the vector field V_{Φ} is also parallel. One can show:

- $h(V_{\Phi}, V_{\Phi}) \leq 0$, i.e. V_{Φ} is causal.
- V_Φ is future oriented.
- $\operatorname{Ric}^{N} \parallel V_{\Phi}^{b} \otimes V_{\Phi}^{b}$.
- If V_{Φ} is timelike, then N is stationary and $\operatorname{Ric}^{N} = 0$.

Thus two cases may arise:

- (1) V_{Φ} timelike
- (2) V_{Φ} lightlike

In both cases $\varphi := \Phi|_M$ is a parallel section of $\Sigma N|_M$. This is equivalent to the generalized imaginary Killing spinor equation

$$\nabla_X^M \varphi = \frac{i}{2} W(X) \bullet \varphi, \qquad \forall X \in TM \qquad (giKs)$$

This implies $D^{(g,W)}(\varphi) = 0$.

Our proposition (A.-Glöckle 2021) implies, conversely: If *M* is a closed spin manifold, and if (g, W) satisfies the dominant energy condition, then every $\varphi \in \ker p^{(g, W)}$ satisfies (ce).

Goal: Determine necessary conditions for (giKs).

Assume V_{Φ} timelike. Then (N, h) can be extended such that

$$(\widetilde{N},\widetilde{h}) = (\widetilde{M},\widetilde{g}_0) \times (\mathbb{R}, -dt^2) /_{\pi_1(M)}$$

where a homomorphism $\pi_1(M) \to \mathbb{R}$ defines the action on \mathbb{R} .

Thus *M* carries a metric g_0 with a parallel spinor. Same obstructions as in Section I.

The lightlike case: geometric picture

(inspired by Baum, Leistner, and Lischewski)

Assume N to be globally hyperbolic with a parallel lightlike spinor and a compact Cauchy surface M.

Then (N, h) can be extended to be geodesically complete.

 $(V_{\varphi})^{\perp}$ is a parallel distribution of codimension 1.

Thus there is a foliation by (\mathcal{L}_x) and if $y \in \mathcal{L}_x$ then

$$V_{\varphi}|_{y} = T_{y}\mathcal{L}_{x}$$

 $V_{\varphi} \in (V_{\varphi})^{\perp}$, a Killing vector field. $\mathcal{F}_{x} := (M \cap \mathcal{L}_{x})$ defines a codimension 1 foliation of M. These leaves carry a metric with a parallel spinor.

Write

$$V_{\Phi}|_{M} = -U_{\Phi} + u_{\Phi}\nu$$

 U_{Φ} tangential to M ν future unit normal of MThen the flow of U_{Φ} maps leaves to leaves.

Compact leaves

Case 1: One leaf (and thus all leaves) is/are non-compact. Then *M* is a mapping torus of some spin diffeomorphism $f: Q \rightarrow Q$.

$$M = M_f = Q \times [0, 1] / (x, 0) \sim (f(x), 1)$$

$$g = g_s + \frac{1}{u_{\Phi}^2} ds^2$$

Here g_s is a family of metrics on Q with a parallel spinor.

We get a smooth path in $\mathcal{R}_{\parallel}(Q)/\operatorname{Diff}_{0}(Q)$ and a loop in $\mathcal{R}_{\parallel}(Q)/\operatorname{Diff}_{\operatorname{spin}}(Q)$.

Questions:

- Why do I not say "a loop in $\mathcal{R}_{\parallel}(Q)$ "?
- Are there examples of unclosed paths in $\mathcal{R}_{\parallel}(Q)/\operatorname{Diff}_{0}(Q)$?
- Does every loop in R_∥(Q)/Diff_{spin}(Q) give a generalized imaginary Killing spinor (giKs)?

Compact leaves, cont'd

• Why do I not say "a loop in $\mathcal{R}_{\parallel}(Q)$ "?

There is no natural way to identify the leaves. It depends on the choice of the Cauchy hypersurface.

• Are there examples of unclosed paths in $\mathcal{R}_{\parallel}(Q)/\operatorname{Diff}_{0}(Q)$? Yes! $Q = \mathbb{R}/\mathbb{Z}^{2}$.

Example (Sol geometry, 3-dim) $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \exp(B)$ defines a diffeomorphism $\frac{\mathbb{R}^2}{\mathbb{Z}^2} \xrightarrow{f=A} \frac{\mathbb{R}^2}{\mathbb{Z}^2}$. $g = g_s + ds^2$ and $g_s := \exp(-sB)^* g_{eucl}$.

A.-Kröncke-Müller (2019 pp): we get a giKs on the mapping torus M_A of A.

$$\Rightarrow \pi_1(M_A) = \mathbb{Z}^2 \rtimes \mathbb{Z}$$
 is solvable

Compact leaves, cont'd

Example (Nil geometry, 3-dim)

$$A = \begin{pmatrix} 1 & 0 \\ \ell & 1 \end{pmatrix} = \exp\left(\begin{pmatrix} 0 & 0 \\ \ell & 0 \end{pmatrix}\right) = \exp\left(\underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & -\ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & -\ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2 \\ \ell/2 & 0 \end{pmatrix}}_{\ell/2} + \underbrace{\begin{pmatrix} 0 & \ell/2$$

defines a diffeomorphism \in Diff $\begin{pmatrix} \mathbb{R}^2 \\ \mathbb{Z} \oplus \ell \mathbb{Z} \end{pmatrix}$; $g_s := \begin{pmatrix} 1 & 0 \\ -s\ell & 1 \end{pmatrix}^{n} g_{eucl}$

We get a giKs on
$$\frac{\mathbb{R}^2}{\mathbb{Z}\oplus\ell\mathbb{Z}}$$
 × \mathbb{R} , $g = g_s + ds^2$.

Because of the antisymmetric part B_{as} , the spinor will "rotate" and not "close up" in general.

For $L\ell \in 8\pi\mathbb{Z}$ the spinor is *L*-periodic in *s* and we get an example on a Heisenberg-manifold.

$$1 \rightarrow \mathbb{Z} \rightarrow \pi_1 \rightarrow \mathbb{Z}^2 \rightarrow 1$$
 centrally, $\pi_1 = \mathbb{Z}^2 \rtimes \mathbb{Z}$

Non-compact leaves

Case 2: One leaf (and thus all leaves) is/are non-compact.

All leaves are dense and isometric.

However the flow of U_{φ} is not isometric, even after an isotopy. Example: a "tilted" variant of the Nil geometry example.

Theorem (Ammann–Glöckle 2021)

If a closed spin manifold M carries a Riemannian metric g with a non-trivial lightlike giKs and non-compact leaves, then $b_1(M) = 1$, and there is a finite cover

$$\hat{M} = P \times T \xrightarrow{finite} M$$

where P is a simply connected, compact manifold with a parallel spinor, and where T is a torus bundle over a closed manifold B. Furthermore B^k is homeomorphic to a torus, and B has a dense codimension-1-foliation by leaves diffeomorphic to \mathbb{R}^{k-1} and a transversal measure.

DEC – Conclusions

If a closed spin manifold *M* carries a giKs, ...

then π₁(M) is virtually solvable of derived length at most 2,
 i.e. there is a finite index subgroup π ⊂ π₁(M) fitting in the short exact sequence

$$\mathbf{1} \to \mathbb{Z}^\ell \to \pi \to \mathbb{Z}^k \to \mathbf{1}$$

with dim $M \ge k + \ell$.

- ... and if dim $M = k + \ell$, then M is finitely covered by torus bundle over a topological torus
- ... and if dim $M > k + \ell$, then M is finitely covered by some \hat{M} with $b_4(\hat{M}) \neq 0$ or $b_3(\hat{M}) \neq 0$.

If *M* does not satisfy one of these necessary conditions, then Glöckle's Lorentzian α -index yields:

- If ind (*M*) ≠ 0 in KO_{dim M}(*pt*) then, *I*[≥](*M*) is not connected: there is no path from a "big bang" to "big crunch".
- ▶ If $m = \dim M \ge 6$ and if $m + k \in 4\mathbb{Z} \cup (8\mathbb{Z} + 1) \cup (8\mathbb{Z} + 2)$, then $\pi_k(\mathcal{I}^{\ge}(M)) \to \mathrm{KO}_{m+k}(pt)$ is non-trivial.

