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I. Riemannian metrics of psc and nnsc
The subtle difference between scal > 0 and scal ≥ 0

Let M be a compact spin manifold.
For any Riemannian metric g we have a Dirac operator
/D ∶ Γ(ΣM)→ Γ(ΣM). It is an elliptic self-adjoint operator, and
thus a Fredholm operator.

Schrödinger-Lichnerowicz formula:

/D2
ϕ = ∇∗∇ϕ + scal

4
ϕ.

If scal > 0, then /D is invertible.

This allows many applications: obstructions to positive scalar
curvature, information about the moduli space of psc metrics.



Questions for our talk:

▸ What about scal ≥ 0?
▸ Why are scal > 0 and scal ≥ 0 interesting?
▸ How far do we get with Lorentzian analogues?



Non-negative scalar curvature

Now let M be a compact connected spin manifold, and let g be
a Riemannian metric with scal g ≥ 0.
Assume /Dϕ = 0, ϕ /≡ 0. Then

0 = ∫
M
⟨ /D2

ϕ,ϕ⟩ = ∫
M

∥∇ϕ∥2

´¹¹¹¹¹¸¹¹¹¹¹¹¶
≥0

+1
4 ∫M

scal g

²
≥0

∥ϕ∥2

±
≥0

.

Thus we have zero everywhere, e.g. ∇ϕ = 0. (A parallel spinor)

Ô⇒ Strong implications.



Implications from parallel spinors, Part 1

Let (M,g) be a Riemannian or a Lorentzian connected spin
manifold.
Assume that ϕ /≡ 0 is a parallel spinor.
⇒ RX ,Yϕ = 0

⇒ 0 = ∑±ei ⋅Rei ,Yϕ
!= 1

2 Ric(Y ) ⋅ ϕ
⇒ g(Ric(Y ),Ric(Y ))ϕ = −Ric(Y ) ⋅ Ric(Y ) ⋅ ϕ = 0
In the Riemannian case: Ric = 0

Theorem
If a connected Riemannian spin manifold (M,g) carries parallel
spinor ϕ /≡ 0, then Ricg = 0.
Note: in the Lorentzian case we may only conclude that Ric(Y )
is lightlike.



Implications from parallel spinors, Part 1, cont’d

From the Cheeger-Gromoll splitting theorem it follows:
If (M,g) is a compact Ricci-flat manifold, then it has a finite
cover

(M̂, ĥ) = (N,h) × (Rk/Γ), π1(N) = 1.

In particular, π1(M) is virtually abelian
(i.e. it contains an abelian subgroup of finite index).

Conclusion
If M is a compact spin manifold, and π1(M) is not virtually
abelian, then we obtain

R≥(M) → Inv-Self-Adj

g ↦ /Dg

R
≥
(M) ∶= {g ∣ scal g

≥ 0},
Inv-Self-Adj ∶= {invert. self-adj. ops. with “some” additional structure}



Implications from parallel spinors, Part 1, cont’d

Using the map

R≥(M) → Inv-Self-Adj

g ↦ /Dg

we get the usual conlusions for psc, e.g.:
▸ If 0 ≠ ind (M) ∈ KOdim M(pt), then R≥(M) = ∅.
▸ One can use the family index theorem to find non-trivial

elements in πk(R≥(M)).
(work for psc by Hitchin, Crowley–Hanke–Schick–Steimle,
Botvinnik–Ebert–Randal-Williams)



Implications from parallel spinors, Part 2
If (M,g) carries a parallel spinor, then it has special holonomy.

p ∈ M:
Hol(M,g) ∶= {Parallel transport along loops p ↝ p} ⊂ O(n)

If there is a parallel spinor, then there is a finite cover M̂ →M
such that

M̂ = N1 × . . . ×Nk ,

Hol(Ni) ∈ {{1},SU(`),Sp(`),G2,Spin(7)}.

⇒ obstructions on Betti-numbers, e.g. (for dim M ≥ 4):
b4(M) ≠ 0 or (b3(M̂) ≠ 0 and b6(M̂) ≠ 0 . . . b3 dim M/7(M̂) ≠ 0)

If no metrics with par. spinors exists: conclusions as in Part 1.



Implications from parallel spinors, Part 3

If (M,g) carries a parallel spinor, then it is a stable Ricci-flat
metric.

g cannot be deformed to a metric of positive scalar curvature

Theorem (Schick–Wraith)
Let M be a closed manifold with a psc metric g0, and let
R≥(M)g0 be the path-connected component of g0 in R≥(M).
Then we get a map

R≥(M)g0 → Inv-Self-Adj

g ↦ /Dg

Conclusion
Nontrivial homotopy groups πk(R≥(M)g0), k ≥ 1.



Implications from parallel spinors, Part 3, cont’d

Important ingredient: good understanding of
R∥(M) ∶= {g ∈R(M) ∣ g has a parallel spinor}
▸ R∥(M) is a Fréchet submanifold of Γ(T ∗M ⊙ T ∗M)
▸ Smooth, finite-dim. premoduli space R∥(M)/Diff0(M)
▸ No psc metric in a neighborhood of R∥(M)

The case of irreducible holonomy, π1(M) = 1 is well-understood
due to work by McK Wang, Tian–Todorov, Joyce,
Dai–G. Wang–Wei, Nordstroem,...

Additional effort required for reducible holonomy (or
π1(M) ≠ 1)
Kröncke’s stability (2015) & A.–Kröncke–Weiß–Witt (2019)



Goals:

▸ What is the motivation for understanding scal ≥ 0 coming
from general relativity?

▸ Are there Lorentzian analogues?
We will Lorentzian see analogues for
▸ scal > 0, scal ≥ 0
▸ Dirac operators
▸ parallel spinors
▸ Methods to detect topology in the moduli space
▸ Analogues to implications for parallel spinors, Part 1 and 2

However, no analogue to stability (yet?).
Obstructions do not seem optimal yet.



II. Strict DEC on Lorentzian initial data

Dominant energy condition
Let h be a Lorentzian metric on N
Energy-momentum tensor or Einstein tensor

T h ∶= Rich −1
2

scal hh

We say that h satisfies the dominant energy condition in x ∈ N if
for all causal future oriented vectors X ,Y ∈ TxN:

T (X ,Y ) ≥ 0. (DEC)

Physical interpretation (Einstein equation):

Non-negative mass density of matter fields.

Assume: (N,h) is time- and space-oriented, globally
hyperbolic, spin, compact Cauchy hypersurface



 I(M) ∶= {(g,W ) ∣ g Riemannian metric,

W ∈ End(TM) symmetric}.



DEC on spacelike hypersurfaces

If M is a space-like hypersurface with induced metric g,
and if ν is a future-oriented unit normal, then we define:
Energy density ρ ∶= T h(ν, ν) = 1

2 (scal g + (trW )2 − tr(W 2))
Momentum density j ∶= T h(ν, ⋅ )∣Tx M = divW − d trW
DEC for h implies ρ ≥ ∣j ∣.

Definition
Let g be a Riemannian metric and W a g-symmetric
endomorphism section. We say that (g,W ) satisfies
▸ the dominant energy condition if ρ ≥ ∣j ∣ (DEC)

I≥(M) ∶= {(g,W ) ∈ I(M) satisfying (DEC)}.

▸ the strict dominant energy condition if ρ > ∣j ∣ (DEC>)

I>(M) ∶= {(g,W ) ∈ I(M) satisfying (DEC>)}.



The inclusion R≥(M)→ I≥(M)

R(M)↪ I(M), g ↦ (g,0)
R>(M) ∶= {g ∈R ∣ scal g ≥ 0} =R(M) ∩ I>(M)
R≥(M) ∶= {g ∈R ∣ scal g > 0} =R(M) ∩ I≥(M)

▸ This is the main reason why Riemannian metrics with
scal ≥ 0 (or scal > 0) play a central role in general relativity.

▸ Can we control the topology of I≥(M)?
▸ First important step: understand I>(M) (J. Glöckle,

arXiv:1906.00099)

https://arxiv.org/abs/1906.00099


Glöckle’s work on I≥(M)

A lot is known about I>(M).
In particular, we have (g, λ Id) ∈ I>(M) if
▸ g ∈R>(M) and λ ∈ R, or
▸ g ∈R≥(M) and λ ∈ R ∖ {0}, or
▸ g ∈R(M) and ∣λ∣ ≫ 0.

We get a map Susp(R>(M))→ I>(M).

Susp(R>(M)) = (R>(M) × [−1,1]/M × {−1})/M × {1}.



 



The Lorentzian α-index
For any Ψ ∶ Sk+1 → I>(M) J. Glöckle constructs

αLor(Ψ) ∈ KOm+k+1({∗}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z if m + k + 1 ∈ 4N
Z/2 if m + k + 1 ∈ 8N + 1

or m + k + 1 ∈ 8N + 2
0 else

m = dim M.

Theorem (J. Glöckle 2019)
The diagram

πk(R>(M)) πk+1(Susp(R>(M)) πk+1(I>(M))

KOm+k+1({∗})

Susp

αRiem αLor

commutes.



Key technique in Glöckle’s article: The Dirac–Witten operator
Literature: Witten 1981, Parker-Taubes, Hijazi-Zhang, . . . ,
Glöckle 2019.
Restrict the spinor bundle ΣN from (N,h) to (M,g).
As spinor module ΣN ∣M is one or two copies of ΣM.
However:
scalar product ⟪ ⋅ , ⋅⟫ on ΣN is indefinite (splitt signature),
scalar product ⟨ ⋅ , ⋅ ⟩ on ΣM positive definite.
They are related by

⟨ϕ,ψ⟩ = ⟪ν ⋅ ϕ,ψ⟫.

The connections differ:

∇N
Xϕ = ∇M

X ϕ −
1
2
ν ⋅W (X) ⋅ ϕ

Dirac–Witten-Operator

/D(g,W)ϕ =
m
∑
j=1

ej ⋅ ∇N
ej
ϕ

where (e1, . . . ,em) is a locally defined orthonorm. frame of TM.



/D(g,W) is self-adjoint and Fredholm.

Schrödinger-Lichnerowicz formula:

( /D(g,W))
2
= (∇N)∗∇N + 1

2
(ρ − ν ⋅ j♯⋅),

The ∗ is taken on M with respect to ⟨⋅, ⋅⟩.
Recall:
Energy density ρ ∶= T h(ν, ν) = 1

2 (scal g + (trW )2 − tr(W 2))
Momentum density j ∶= T h(ν, ⋅ )∣Tx M = divW − d trW
DEC for h implies ρ ≥ ∣j ∣.

This implies that /D(g,W) is invertible if (g,W ) ∈ I>(M).
As a consequence Glöckle can use index theoretical methods.



Understanding I≥(M)

In the following diagram we assume k ≥ 1 and that the base
point is g0 resp. (g0,0) where g0 has positive scalar curvature.

πk(R>(M)) πk+1(I>(M))

πk(R≥(M)) πk+1(I≥(M))

Index theoretically determined non-trivial homotopy groups
survive in the upper right and in the lower left corner.
What about the lower right corner?



III. DEC and the kernel of the Dirac–Witten operator

Proposition (Ammann, Glöckle (2021))
Assume that M is a connected closed spin manifold and
(g,W ) ∈ I≥(M).
We assume that ϕ ∈ ker /D(g,W) ∖ {0}.
Then g,W , ϕ provides initial data for a Lorentzian manifold with
a parallel spinor.

In fact ϕ: is a parallel section of ΣN ∣M →M.



Recap: The Cauchy problem for Lorentzian manifolds
with parallel spinors

Work by H. Baum, T. Leistner, A. Lischewski
Let (N,h) be a space- and time-oriented Lorentzian spin
manifold with a parallel spinor Φ.
The Dirac current of (N,h,Φ) is the vector field VΦ with

h(X ,VΦ) = −⟪X ⋅Φ,Φ⟫ ∀X ∈ TN.

As Φ is parallel, the vector field VΦ is also parallel.
One can show:

▸ h(VΦ,VΦ) ≤ 0, i.e. VΦ is causal.
▸ VΦ is future oriented.
▸ RicN ∥ V b

Φ ⊗V b
Φ.

▸ If VΦ is timelike, then N is stationary and RicN = 0.



Thus two cases may arise:
(1) VΦ timelike
(2) VΦ lightlike

In both cases ϕ ∶= Φ∣M is a parallel section of ΣN ∣M .
This is equivalent to the generalized imaginary Killing spinor
equation

∇M
X ϕ = i

2
W (X) ● ϕ, ∀X ∈ TM (giKs)

This implies /D(g,W)(ϕ) = 0.

Our proposition (A.-Glöckle 2021) implies, conversely:
If M is a closed spin manifold, and if (g,W ) satisfies the
dominant energy condition, then every ϕ ∈ ker /D(g,W)

satisfies (ce).

Goal: Determine necessary conditions for (giKs).



The timelike case

Assume VΦ timelike.
Then (N,h) can be extended such that

(Ñ, h̃) = (M̃, g̃0) × (R,−dt2)/π1(M)

where a homomorphism π1(M)→ R defines the action on R.

Thus M carries a metric g0 with a parallel spinor.
Same obstructions as in Section I.



The lightlike case: geometric picture
(inspired by Baum, Leistner, and Lischewski)
Assume N to be globally hyperbolic with a parallel lightlike
spinor and a compact Cauchy surface M.
Then (N,h) can be extended to be geodesically complete.
(Vϕ)⊥ is a parallel distribution of codimension 1.
Thus there is a foliation by (Lx) and if y ∈ Lx then

Vϕ∣y = TyLx

Vϕ ∈ (Vϕ)⊥, a Killing vector field.
Fx ∶= (M ∩Lx) defines a codimension 1 foliation of M.
These leaves carry a metric with a parallel spinor.

Write
VΦ∣M = −UΦ + uΦν

UΦ tangential to M
ν future unit normal of M
Then the flow of UΦ maps leaves to leaves.



Compact leaves
Case 1: One leaf (and thus all leaves) is/are non-compact.
Then M is a mapping torus of some spin diffeomorphism
f ∶ Q → Q.

M = Mf = Q × [0,1]/(x ,0) ∼ (f (x),1)

g = gs +
1

u2
Φ

ds2

Here gs is a family of metrics on Q with a parallel spinor.

We get a smooth path in R∥(Q)/Diff0(Q) and a loop in
R∥(Q)/Diffspin(Q).

Questions:
▸ Why do I not say “a loop in R∥(Q)”?
▸ Are there examples of unclosed paths in R∥(Q)/Diff0(Q)?
▸ Does every loop in R∥(Q)/Diffspin(Q) give a generalized

imaginary Killing spinor (giKs)?



Compact leaves, cont’d

▸ Why do I not say “a loop in R∥(Q)”?
There is no natural way to identify the leaves. It depends on the
choice of the Cauchy hypersurface.
▸ Are there examples of unclosed paths in R∥(Q)/Diff0(Q)?

Yes! Q = R/Z2.

Example (Sol geometry, 3-dim)

A = (2 1
1 1) = exp(B) defines a diffeomorphism R2

Z2
f=AÐÐ→ R2

Z2 .

g = gs + ds2 and gs ∶= exp(−sB)∗geucl.

A.-Kröncke-Müller (2019 pp): we get a giKs on the mapping
torus MA of A.

⇒ π1(MA) = Z2 ⋊Z is solvable



Compact leaves, cont’d

Example (Nil geometry, 3-dim)

A = (1 0
` 1) = exp((0 0

` 0)) = exp
⎛
⎝

Bsym
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

( 0 `/2
`/2 0 )+

Bas³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

( 0 −`/2
`/2 0 )

⎞
⎠

defines a diffeomorphism ∈ Diff ( R2

Z⊕`Z); gs ∶= ( 1 0
−s` 1)

∗

geucl

We get a giKs on R2

Z⊕`Z ×R, g = gs + ds2.

Because of the antisymmetric part Bas, the spinor will “rotate”
and not “close up” in general.

For L` ∈ 8πZ the spinor is L-periodic in s and we get an
example on a Heisenberg-manifold.

1→ Z→ π1 → Z2 → 1 centrally, π1 = Z2 ⋊Z



Non-compact leaves
Case 2: One leaf (and thus all leaves) is/are non-compact.

All leaves are dense and isometric.
However the flow of Uϕ is not isometric, even after an isotopy.
Example: a “tilted” variant of the Nil geometry example.

Theorem (Ammann–Glöckle 2021)
If a closed spin manifold M carries a Riemannian metric g with
a non-trivial lightlike giKs and non-compact leaves,
then b1(M) = 1, and there is a finite cover

M̂ = P × T
finite
ÐÐ→M

where P is a simply connected, compact manifold with a
parallel spinor, and where T is a torus bundle over a closed
manifold B. Furthermore Bk is homeomorphic to a torus, and B
has a dense codimension-1-foliation by leaves diffeomorphic to
Rk−1 and a transversal measure.



DEC – Conclusions
If a closed spin manifold M carries a giKs, . . .
▸ then π1(M) is virtually solvable of derived length at most 2,

i.e. there is a finite index subgroup π ⊂ π1(M) fitting in the
short exact sequence

1→ Z` → π → Zk → 1

with dim M ≥ k + `.
▸ . . . and if dim M = k + `, then M is finitely covered by torus

bundle over a topological torus
▸ . . . and if dim M > k + `, then M is finitely covered by some

M̂ with b4(M̂) ≠ 0 or b3(M̂) ≠ 0.
. . .
If M does not satisfy one of these necessary conditions, then
Glöckle’s Lorentzian α-index yields:
▸ If ind (M) ≠ 0 in KOdim M(pt) then, I≥(M) is not connected:

there is no path from a “big bang” to “big crunch”.
▸ If m = dim M ≥ 6 and if m + k ∈ 4Z ∪ (8Z + 1) ∪ (8Z + 2),

then πk(I≥(M))→ KOm+k(pt) is non-trivial.
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