Yamabe constants, Yamabe invariants and Gromov-Lawson surgeries

Overview over (joint) work with Emmanuel Humbert, Mattias Dahl, Nadine Große, Nobuhiko Otoba

https://ammann.app.uni-regensburg.de/talks/gromov-lawson.pdf

B. Ammann¹

¹Universität Regensburg, Germany

GNOSC Seminar May 13th, 2022

(Conformal) Yamabe constant Y(M, [g])

Einstein-Hilbert functional (Conformal) Yamabe constant Obata's theorem Gromov-Lawson surgery for Yamabe constants The constants $\Lambda_{n,k}$

Yamabe invariants

(Smooth) Yamabe invariant Supreme Einstein metrics Manifolds with $0 < \sigma(M) < \Lambda_n$ Bordism results Descend to ko(*B* Γ)

Interpretations of Theorem B

Higher Yamabe invariants

Sketch of Proof for the theorems

Appendix

Conjectures More values for $\Lambda_{n,k}$

Einstein-Hilbert functional

Let *M* be a compact *n*-dimensional manifold, $n \ge 3$. $\mathcal{R}(M) := \{\text{Riem. metrics on } M\}$. The renormalised Einstein-Hilbert functional is

$$\mathcal{E}_{M}: \mathcal{R}(M) \to \mathbb{R}, \qquad \mathcal{E}_{M}(g) \coloneqq \frac{\int_{M} \operatorname{scal}^{g} \operatorname{dvol}^{g}}{\operatorname{vol}(M, g)^{(n-2)/n}}$$
$$[g_{0}] \coloneqq \{ u^{4/(n-2)}g_{0} \mid u > 0 \}.$$

{Stationary points of $\mathcal{E}_M : [g_0] \to \mathbb{R}$ } = {metrics with constant scalar curvature}

{Stationary points of $\mathcal{E}_M : \mathcal{R}(M) \to \mathbb{R}$ } = {Einstein metrics}

(Conformal) Yamabe constant

The (conformal) Yamabe constant is defined as

$$Y_{\mathcal{M}}([g]) \coloneqq Y(\mathcal{M}, [g]) \coloneqq \inf_{\tilde{g} \in [g]} \mathcal{E}_{\mathcal{M}}(\tilde{g}) > -\infty.$$

If \mathbb{S}^n denote the sphere with the standard structure, then

$$Y_M([g]) \leq Y(\mathbb{S}^n).$$

Yamabe problem $\mathcal{E}_M : [g] \to \mathbb{R}$ attains its infimum. Minimizers have scal = *c*.

Proven by Trudinger 1968, Aubin 1976, Schoen (&Yau)) ≈ 1984

Remark

 $Y_M([g]) > 0$ if and only if [g] contains a metric of positive scalar curvature. Then the space of psc metrics in [g] is contractible.

(日)

Reformulation and non-compact manifolds

Let $g = u^{4/(n-2)}g_0$, g_0 a complete metric on M. Define Yamabe operator $L^{g_0} := 4\frac{n-1}{n-2}\Delta^{g_0} + \operatorname{scal}^{g_0}$.

$$\widetilde{Y}_{M}(g_{0}) \coloneqq \inf \left\{ \frac{\int_{M} u \, L^{g_{0}} u \, \mathrm{dvol}^{g_{0}}}{\|u\|_{L^{2n/(n-2)}(M,g_{0})}^{2}} \mid 0 \notin u \in \mathcal{C}^{\infty}_{c}(M,[0,\infty)) \right\}$$

For compact M we have

$$Y_M([g_0]) = \widetilde{Y}_M(g_0).$$

For non-compact *M* we use this as a definition.

 \sim related work on $Y_M(g)$ for *M* non-compact by Akutagawa, Große, Ammann&Große, and others.

Obata's theorem

Theorem (Obata, 1971)

Assume:

- *M* is connected and compact, $n = \dim M \ge 3$
- ▶ g₀ is an Einstein metric on M
- $g = u^{4/(n-2)}g_0$ with scal^g constant
- (M, g_0) not conformal to \mathbb{S}^n

Then u is constant.

Conclusion

$$\mathcal{E}_M(g_0) = Y(M, [g_0])$$

This conclusion also holds on *M* compact if g_0 is a non-Einstein metric with scal = *const* \leq 0 (Maximum principle).

So in these two cases, we have determined $Y(M, [g_0])$.

However, in general, it is difficult to get explicit "good" lower bounds for $Y(M, [g_0])$.

Recap: Surgery

We consider an embedding of $\iota: S^k \times D^{n-k} \hookrightarrow M^n$. Define $M^{\#} := (M \setminus \iota(S^k \times \mathring{D}^{n-k})) \cup_{S^k \times S^{n-k-1}} (D^{k+1} \times S^{n-k-1})$. We say: $M^{\#}$ arises by *k*-dimensional surgery from *M*.

Picture for n=2, k=1

Picture for n=2, k=1

Gromov-Lawson surgery for Yamabe constants

Assume that $M^{\#}$ arises from *M* by a surgery of dimension $k \le n-3$.

For $\tau \in (0, \infty)$ and $g \in \mathcal{R}(M)$ we define a metric $\mathcal{GL}_{\tau}(g) \in \mathcal{R}(M^{\#})$.

Theorem A (Ammann&Dahl&Humbert (2013)) There is a constant $\Lambda_{n,k} > 0$ with:

$$Y_{M^{\#}}(\mathcal{GL}_{\tau}(g)) \geq \min\{Y_M(g), \Lambda_{n,k}\} - o_{\tau}(1).$$

- ► Our metric *GL_τ(g)* is similar to the Gromov-Lawson construction for positive scalar curvature metrics.
- Technical implementation differs.
- Special cases were known, e.g. a version with 0 instead Λ_{n,k} > is due to Petean, the k = 0-case is due to O. Kobayashi, and the perservation of positivity is the classical Gromov&Lawson/Schoen&Yau result about psc-preserving surgeries.

Technical implementation

We write close to $S \coloneqq \iota(S^k \times \{0\}), r(x) \coloneqq d(x, S)$

$$g \approx g|_{\mathcal{S}} + dr^2 + r^2 g_{\mathrm{round}}^{n-k-1}$$

where g_{round}^{n-k-1} is the round metric on S^{n-k-1} . $t := -\log r$. $\frac{1}{r^2}g \approx e^{2t}g|_S + dt^2 + g_{\text{round}}^{n-k-1}$

We define a metric

$$\mathcal{GL}_{\tau}(g) = \begin{cases} g & \text{for } r > r_1 \\ \frac{1}{r^2}g & \text{for } r \in (2\rho, r_0) \\ f^2(t)g|_{\mathcal{S}} + dt^2 + g_{\text{round}}^{n-k-1} & \text{for } r < 2\rho \end{cases}$$

that extends to a metric on $M^{\#}$.

Spaces of metrics with Yamabe constants above $\boldsymbol{\lambda}$

$$Y_{M}^{-1}((\lambda,\infty)) \coloneqq \{g \in \mathcal{R}(M) \mid Y_{M}([g]) > \lambda\}$$

$$\begin{array}{rcl} Y_M^{-1}\big((0,\infty)\big) &\coloneqq & \{g \in \mathcal{R}(M) \mid Y_M([g]) > 0\} \\ &= & \{g \in \mathcal{R}(M) \mid [g] \text{ contains a psc metric}\} \\ &\simeq & \mathcal{R}_+(M) \coloneqq \{g \in \mathcal{R}(M) \mid \operatorname{scal}^M > 0\} \end{array}$$

Parametrized version of Theorem A

Assume that $M^{\#}$ is obtained by a *k*-dimensional surgery from *M*.

$$Y_M^{-1}((\lambda,\infty)) \xrightarrow{\mathcal{GL}} Y_{M^{\#}}^{-1}((\lambda,\infty))$$

A generalized Chernysh-Walsh result follows then with the same analytical tools as in Thm. A = ADH 2013.

Theorem B (A. 2022, in prep.) The map $\mathcal{GL}: Y_M^{-1}((\lambda, \infty)) \to Y_{M^{\#}}^{-1}((\lambda, \infty))$ is a (weak) homotopy equivalence for $2 \le k \le n-3$.

The constants $\Lambda_{n,k}$

Obviously $\Lambda_{n,k} > 0$ is **not** unique, the larger the better. Unless $n = k + 3 \ge 7$, our result holds for

$$\Lambda_{n,k} \coloneqq \inf_{c \in [0,1]} \mathsf{Y} \big(\mathbb{H}_c^{k+1} \times \mathbb{S}^{n-k-1} \big),$$

where \mathbb{H}_{c}^{k+1} is the simply connected complete Riemannian manifolds of dimension k + 1 with sec = $-c^{2}$.

$$\Lambda_n \coloneqq \min\{\Lambda_{n,0}, \Lambda_{n,1}, \dots, \Lambda_{n,n-3}\}$$

 $\begin{array}{l} \text{Examples:} \\ \Lambda_4 \geq 38.9, \ Y(\mathbb{S}^4) = 61.562 \dots \\ \Lambda_5 \geq 45.1, \ Y(\mathbb{S}^5) = 78.996 \dots \end{array}$

In most cases we get some explicit values for $\Lambda_{n,k} > 0$:

n	k	known Λ _{n,k}	conjectured $\Lambda_{n,k}$	$Y(\mathbb{S}^n)$
3	0	43.82323	43.82323	43.82323
4	0	61.56239	61.56239	61.56239
4	1	≥ 38 .9	59.40481	61.56239
5	0	78.99686	78.99686	78.99686
5	1	≥ 51.2	78.18644	78.99686
5	2	≥ 45 .1	75.39687	78.99686

The blue values rely on special investigations by Petean and Ruiz.

n	k	known Λ _{n,k}	conjectured $\Lambda_{n,k}$	$Y(^{n})$
6	0	96.29728	96.29728	96.29728
6	1	> 0	95.87367	96.29728
6	2	≥ 54.77	94.71444	96.29728
6	3	\geq 49.98	91.68339	96.29728
7	0	113.5272	113.5272	113.5272
7	1	> 0	113.2670	113.5272
7	2	≥ 74.50	112.6214	113.5272
7	3	\geq 74.50	111.2934	113.5272
7	4	> 0	108.1625	113.5272

• More values for $\Lambda_{n,k}$ • To Conjectures

For $n \ge 7$, there are still problems with the explicit values for k = 1 and k = n - 3.

(Smooth) Yamabe invariant

For *M* compact:

$$\sigma(\boldsymbol{M}) \coloneqq \sup_{[\boldsymbol{g}] \subset \mathcal{R}(\boldsymbol{M})} Y(\boldsymbol{M}, [\boldsymbol{g}]) \in (-\infty, Y(\mathbb{S}^n)]$$

smooth Yamabe invariant. (Introduced by O. Kobayashi and R. Schoen)

Remark *M* caries a psc metric $\Leftrightarrow \sigma(M) > 0$

Supreme Einstein metrics

Following LeBrun, we say a Riemannian Einstein metric g on a closed manifold M is a supreme Einstein metric if

$$\mathcal{E}_{M}(g) = Y_{M}([g]) = \sigma(M).$$

The following Riem. manifolds are supreme Einstein:

- Round spheres trivial
- Flat tori (Gromov&Lawson, Schoen&Yau ≈' 83)
 E.g. enlargeable Manifolds
- ▶ $\mathbb{R}P^3$ (Bray&Neves '04) Inverse mean curvature flow
- Compact quotients of 3-dim. hyperbolic space (Perelman, M. Anderson '06 (sketch), Kleiner&Lott '08) Ricci flow
- ► (CP², g_{FS}) (LeBrun) Seiberg-Witten theory, index theory → next talk

If our conjectured values for $\Lambda_{n,k}$ hold, then $(\mathbb{C}P^3, g_{FS})$ is not a supreme Einstein metric.

Manifolds with $0 < \sigma(M) < \Lambda_n$

Are there M with

$$0 < \sigma(M) < \Lambda_n \coloneqq \min\{\Lambda_{n,0}, \ldots, \Lambda_{n,n-3}\}?$$

Conjecture (Schoen)

If the finite group $\Gamma \subset SO(n+1)$ acts freely on S^n , then the round metric g_{round}^n on S^n/Γ is a supreme Einstein metric. The conjecture would imply

$$\begin{aligned} \mathcal{E}_{S^n/\Gamma}(g_{\text{round}}^n) &= Y(S^n/\Gamma, g_{\text{round}}^n) = \sigma(S^n/\Gamma) \\ &= n(n-1) \frac{\operatorname{vol}(\mathbb{S}^n)^{2/n}}{(\#\Gamma)^{2/n}} \xrightarrow{\#\Gamma \to \infty} 0. \end{aligned}$$

Unfortunately, only known for $\Gamma = \{1\}$ and $\mathbb{R}P^3$.

A Monotonicity formula for surgery

Corollary (ADH, follows from Theo. A) Let $M^{\#}$ be obtained from M by k-dimensional surgery, $0 \le k \le n-3$. Then

 $\sigma(\mathbf{M}^{\#}) \geq \min\{\sigma(\mathbf{M}), \Lambda_{n,k}\}$

For the truncated Yamabe invariant $\chi_{\Lambda_{n}}(\sigma(M))$ we have

$$\chi_{\Lambda_n}(\sigma(\boldsymbol{M}^{\#})) \geq \chi_{\Lambda_n}(\sigma(\boldsymbol{M}))$$

and we have equality for $2 \le k \le n-3$.

(日)

Bordism results

Let $n \ge 5$, Γ finitely presented

Bordism techniques (Gromov-Lawson, Stolz,...) and Theorem A yield a well-defined map

where we chose a representative with a connected non-empty *M* and $f_* : \pi_1(M) \to \Gamma$ bijective.

$$s_{\Gamma}(a+b) \geq \min\{s_{\Gamma}(a), s_{\Gamma}(b)\}$$

We get subgroups $s_{\Gamma}^{-1}((\lambda,\infty)) \subset \Omega_n^{\text{spin}}(B\Gamma)$.

Descend to $ko(B\Gamma)$

Recall from index theory

$$\Omega_n^{\rm spin}(B\Gamma) \xrightarrow{D} {\rm ko}_n(B\Gamma) \xrightarrow{\rm per} {\rm KO}_n(B\Gamma) \xrightarrow{A} {\rm KO}_n(C^*\Gamma)$$

Descend to $ko(B\Gamma)$

Recall from index theory

Descend to $ko(B\Gamma)$

Recall from index theory

Theorem C (Ammann&Otoba, in prep.)

For a slightly adapted constant Λ_n , the truncated Yamabe invariant descents to a map $ko_n(B\Gamma) \rightarrow \mathbb{R}$.

Idea of proof

One has to study Yamabe invariants of $\ker(\Omega_n^{\text{Spin}}(B\Gamma) \xrightarrow{D} \ker(B\Gamma))$. Given by Baas-Sullivan singular manifolds, obtained by gluing of multi- $\mathbb{H}P^2$ -bundles, see work by Hanke.

Interpretations of Theorem B

Theorem B'

Let $\lambda \in [0, \Lambda_{n,k})$. The map $\mathcal{GL} : Y_M^{-1}((\lambda, \infty)) \to Y_{M^{\#}}^{-1}((\lambda, \infty))$ is well-defined (up to homotopy) for $0 \le k \le n-3$ and is a (weak) homotopy equivalences for $2 \le k \le n-3$.

In fact these maps and the associated homotopies are compatible with the inclusion associated to $\lambda \geq \tilde{\lambda}$. Thus we get a morphism of "filtered topological spaces"

$$\mathcal{GL}: \left(Y_{M}^{-1}((\lambda,\infty))\right)_{\lambda\in[0,\Lambda_{n,k})} \to \left(Y_{M^{\#}}^{-1}((\lambda,\infty))\right)_{\lambda\in[0,\Lambda_{n,k})},$$

which are "filtered homotopy equivalences" for $2 \le k \le n-3$.

Higher Yamabe invariants

Yamabe invariant
$$\sigma(M) \coloneqq \sup \left\{ \lambda \in \mathbb{R} \mid Y_M^{-1}((\lambda, \infty)) \neq \emptyset \right\}$$

Higher Yamabe invariants

Yamabe invariant
$$\sigma(M) := \sup \left\{ \lambda \in \mathbb{R} \mid Y_M^{-1}((\lambda, \infty)) \neq \emptyset \right\}$$

 $\pi_{-1}(\emptyset) = \emptyset, \quad \pi_{-1}(\underbrace{S}_{\neq *}) = \{*\}$

Functor from

$$(\mathbb{R}, \geq) \longrightarrow \left(\{ \emptyset, \{*\} \}, \mathsf{maps} \right) \\ \lambda \longmapsto \pi_{-1} \left(Y_M^{-1} ((\lambda, \infty)) \right) \\ \lambda \geq \tilde{\lambda} \longmapsto \pi_{-1} (\hookrightarrow)$$

So far: nothing than a very complicated way to characterize a real number!

Higher Yamabe invariants

Truncated Yamabe invariant $\chi_{\Lambda_n}(\sigma(M))$ $\pi_{-1}(\emptyset) = \emptyset, \quad \pi_{-1}(\underbrace{S}) = \{*\}$

Essentially a functor from

$$([0,\Lambda_n),\geq) \longrightarrow \left(\left\{\emptyset,\left\{*\right\}\right\}, \mathsf{maps}\right)$$
$$\lambda \longmapsto \pi_{-1}\left(Y_M^{-1}((\lambda,\infty))\right)$$
$$\lambda \geq \tilde{\lambda} \longmapsto \pi_{-1}(\hookrightarrow)$$

So far: nothing than a very complicated way to characterize a number in $[0, \Lambda_n]!$

Higher Yamabe invariants, ct'd

Higher Yamabe invariant $\chi_{\Lambda_n}(\sigma^k(M))$, $k \in \mathbb{N} \cup \{0\}$. For k = 0 we get a functor from

$$([0,\Lambda_n),\geq) \xrightarrow{\chi_{\Lambda_n}(\sigma^{\kappa})} (\text{sets}, \text{maps})$$
$$\lambda \longmapsto \pi_0 \left(Y_M^{-1}((\lambda,\infty))\right)$$
$$\lambda \geq \tilde{\lambda} \longmapsto \pi_0(\hookrightarrow)$$

For k > 1 we get a functor from

$$([0,\Lambda_n),\geq) \xrightarrow{\chi_{\Lambda_n}(\sigma^k)} (\operatorname{grps}^{\pi_0}, \operatorname{hom}^{\pi_0})$$
$$\lambda \longmapsto \pi_k \left(Y_M^{-1}((\lambda,\infty)) \right)$$
$$\lambda \geq \tilde{\lambda} \longmapsto \pi_k (\hookrightarrow)$$

For k = 1: similar with conjugacy classes.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Theorem B implies that all higher (truncated) Yamabe invariants are invariant under suitable bordisms, i.e. those that can be decomposed in surgeries of dimension $k \in \{2, 3, ..., n-3\}$.

We expect – but we are far from a proof – that the higher Yamabe invariants of $\mathbb{C}P^3$ are non-trivial for $82.986 \le \lambda \le 96.297$.

Sketch of Proof for Theorem A

Theorem A (Ammann&Dahl&Humbert (2013)) There is a constant $\Lambda_{n,k} > 0$ with:

$$Y_{M^{\#}}(\mathcal{GL}_{\tau}(g)) \geq \min\{Y_{M}(g), \Lambda_{n,k}\} - o_{\tau}(1).$$

Assume we have $\tau_i \rightarrow \infty$ with $g_i \coloneqq \mathcal{GL}_{\tau_i}(g)$ and

$$\lambda_{\infty} \coloneqq \lim_{i \to \infty} Y_{M^{\#}}(g_i) < Y(M,g).$$

Choose Yamabe minimizer $\tilde{g}_i \in [g_i]$.

After passing to a subsequence, then for some $p_i \in M^{\#}$

$$(M^{\#},\tilde{g}_i,p_i) \to (N,h,p_{\infty})$$

in the pointed Gromov-Hausdorff- C^{∞} -sense.

- Either: after removing singularities from (N, h, p_{∞}) we get (M, g); then $\lambda_{\infty} \ge Y(M, g)$.
- Or (N, h, p_{∞}) is in a well-controlled family of model spaces $\sim \Lambda_{n,k}$

Sketch of Proof for Theorem B

Theorem B (A. 2022, in prep.) The map $\mathcal{GL}: Y_M^{-1}((\lambda, \infty)) \to Y_{M^{\#}}^{-1}((\lambda, \infty))$ is a (weak) homotopy equivalence for $2 \le k \le n-3$.

Well-definedness

Roughly as the proof of Theorem A, but in families.

Weak homotopy equivalence

Split the construction in several steps, $\mathcal{R}_{>\lambda}(M) \coloneqq Y_M^{-1}((\lambda, \infty))$ Step no. 1 : \mathcal{GL}_1 makes the normal exponential maps coincide for all metrics in compact family, and cuts off the lower order terms.

 $\mathcal{GL}^1 : \mathcal{R}_{>\lambda}(M) \to \mathcal{R}^{S^k,\epsilon}_{>\lambda}(M)$ is a homotopy inverse to the inclusion $\mathcal{R}^{S^k,\epsilon}_{>\lambda}(M) \hookrightarrow \mathcal{R}_{>\lambda}(M)$

Step no. 2 Make a conformal deformation that makes the metrics in the normal direction of torpedo type. Obviously this step does not affect the Yamabe constant. Thus trivially we have a homotopy equivalence:

$$\mathcal{GL}^{2}: \mathcal{R}^{\mathcal{S}^{k}, \epsilon}_{>\lambda}(M) \to \mathcal{R}^{\mathcal{S}^{k}, \epsilon, \text{infl-torp}}_{>\lambda}(M)$$

Step no. 3 Slow down the inflation in tangential direction slowly. One analyses certain blow-up limits in analogy to the proof of Theorem A. Then remove the curvature of the normal bundle of *S*. Below $\Lambda_{n,k}$ one obtains a homotopy equivalence.

$$\mathcal{GL}^{3}: \mathcal{R}^{\mathcal{S}^{k}, \epsilon, \text{infl-torp}}_{>\lambda}(M) \to \mathcal{R}^{\mathcal{S}^{k}, \epsilon', \text{torp}, \text{prod}}_{>\lambda}(M)$$

Step no. 4 Let the torpedos go to infinity. We get a convergence against manifolds with an end isometric (in a standard way) to

$$(S^k \times S^{n-k-1} \times [0,\infty), \mu_1 g^k_{\text{round}} + \mu_2 g^{n-k-1}_{\text{round}} + dt^2).$$

Get a homotopy equivalence

$$\mathcal{GL}^4: \mathcal{R}^{S^k,\epsilon',\mathrm{torp},\mathrm{prod}}_{>\lambda}(M) \to \mathcal{R}^{S^k \times S^{n-k-1},std}_{>\lambda}\big(M \smallsetminus \iota(S^k \times 0)\big).$$

With

$$M \smallsetminus \iota(S^k \times 0) \cong M^{\#} \smallsetminus \iota^{\#}(S^{n-k-1} \times 0)$$

we get

$$\mathcal{R}^{S^k \times S^{n-k-1}, std}_{>\lambda} \big(M \smallsetminus \iota(S^k \times 0) \big) \cong \mathcal{R}^{S^{n-k-1} \times S^k, std}_{>\lambda} \big(M^{\#} \smallsetminus \iota^{\#}(S^{n-k-1} \times 0) \big),$$

and this completes the proof.

Thanks for the attention.

Conjecture #1: $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}) \ge Y(\mathbb{R}^{k+1} \times \mathbb{S}^{n-k-1})$

Conjecture #2:

The infimum in the definition of $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1})$ is attained by an $O(k+1) \times O(n-k)$ invariant function if $0 \le c < 1$.

O(n-k)-invariance is difficult,

O(k + 1)-invariance follows from standard reflection methods

Comments

If we assume Conjecture #2, then Conjecture #1 reduces to an ODE and $Y(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1})$ can be calculated numerically. Assuming Conjecture #2, a maple calculation confirmed Conjecture #1 for all tested *n*, *k* and *c*. The conjecture **would** imply:

$$\sigma(S^2 \times S^2) \ge \Lambda_{4,1} = 59.4...$$

Compare this to

 $Y(\mathbb{S}^4) = 61.5...$ $Y(\mathbb{S}^2 \times \mathbb{S}^2) = 50.2...$ $\sigma(\mathbb{C}P^2) = 53.31...$

More values for $\Lambda_{n,k}$ Back

п	k	$\Lambda_{n,k} \geq$	$\Lambda_{n,k} =$	$Y(\mathbb{S}^n)$
		known	conjectured	
3	0	43.8	43.8	43.8
4	0	61.5	61.5	61.5
4	1	38.9	59.4	61.5
5	0	78.9	78.9	78.9
5	1	56.6	78.1	78.9
5	2	45.1	75.3	78.9
6	0	96.2	96.2	96.2
6	1	> 0	95.8	96.2
6	2	54.7	94.7	96.2
6	3	49.9	91.6	96.2
7	0	113.5	113.5	113.5
7	1	> 0	113.2	113.5
7	2	74.5	112.6	113.5
7	3	74.5	111.2	113.5
7	4	> 0	108.1	113.5

п	k	$\Lambda_{n,k} \geq$	$\Lambda_{n,k} =$	$Y(\mathbb{S}^n)$
		known	conjectured	
8	0	130.7	130.7	130.7
8	1	> 0	130.5	130.7
8	2	92.2	130.1	130.7
8	3	95.7	129.3	130.7
8	4	92.2	127.9	130.7
8	5	> 0	124.7	130.7
9	0	147.8	147.8	147.8
9	1	109.2	147.7	147.8
9	2	109.4	147.4	147.8
9	3	114.3	146.9	147.8
9	4	114.3	146.1	147.8
9	5	109.4	144.6	147.8
9	6	> 0	141.4	147.8

► Back

п	k	$\Lambda_{n,k} \geq$	$\Lambda_{n,k} =$	$Y(\mathbb{S}^n)$
		known	conjectured	
10	0	165.0		165.02
10	1	102.6		165.02
10	2	126.4		165.02
10	3	132.0		165.02
10	4	133.3		165.02
10	5	132.0		165.02
10	6	126.4		165.02
10	7	> 0		165.02
11	0	182.1		182.1
11	1	> 0		182.1
11	2	143.3		182.1
11	3	149.4		182.1
11	4	151.3		182.1
11	5	151.3		182.1
11	6	149.4		182.1
11	7	143.3		182.1
11	8	> 0		182.1

