Yamabe constants, Yamabe invariants and Gromov-Lawson surgeries

Overview over (joint) work with Emmanuel Humbert, Mattias Dahl, Nadine Große, Nobuhiko Otoba
https://ammann.app.uni-regensburg.de/talks/gromov-lawson.pdf

B. Ammann ${ }^{1}$
${ }^{1}$ Universität Regensburg, Germany

GNOSC Seminar
May 13th, 2022
(Conformal) Yamabe constant $Y(M,[g])$
Einstein-Hilbert functional
(Conformal) Yamabe constant
Obata's theorem
Gromov-Lawson surgery for Yamabe constants
The constants $\Lambda_{n, k}$
Yamabe invariants
(Smooth) Yamabe invariant
Supreme Einstein metrics
Manifolds with $0<\sigma(M)<\Lambda_{n}$
Bordism results
Descend to ko($B \Gamma$)
Interpretations of Theorem B
Higher Yamabe invariants
Sketch of Proof for the theorems
Appendix
Conjectures
More values for $\Lambda_{n, k}$

Einstein-Hilbert functional

Let M be a compact n-dimensional manifold, $n \geq 3$.
$\mathcal{R}(M):=\{$ Riem. metrics on $M\}$.
The renormalised Einstein-Hilbert functional is

$$
\mathcal{E}_{M}: \mathcal{R}(M) \rightarrow \mathbb{R}, \quad \mathcal{E}_{M}(g):=\frac{\int_{M} \text { scal }\left.^{g} \mathrm{dvol}\right|^{g}}{\operatorname{vol}(M, g)^{(n-2) / n}}
$$

$\left[g_{0}\right]:=\left\{u^{4 /(n-2)} g_{0} \mid u>0\right\}$.
$\left\{\right.$ Stationary points of $\left.\mathcal{E}_{M}:\left[g_{0}\right] \rightarrow \mathbb{R}\right\}=\{$ metrics with constant scalar curvature $\}$
$\left\{\right.$ Stationary points of $\left.\mathcal{E}_{M}: \mathcal{R}(M) \rightarrow \mathbb{R}\right\}=\{$ Einstein metrics $\}$

(Conformal) Yamabe constant

The (conformal) Yamabe constant is defined as

$$
Y_{M}([g]):=Y(M,[g]):=\inf _{\tilde{g} \in[g]} \mathcal{E}_{M}(\tilde{g})>-\infty .
$$

If \mathbb{S}^{n} denote the sphere with the standard structure, then

$$
Y_{M}([g]) \leq Y\left(\mathbb{S}^{n}\right)
$$

Yamabe problem $\mathcal{E}_{M}:[g] \rightarrow \mathbb{R}$ attains its infimum. Minimizers have scal $=c$.
Proven by Trudinger 1968, Aubin 1976, Schoen (\&Yau)) ~ 1984
Remark
$Y_{M}([g])>0$ if and only if [g] contains a metric of positive scalar curvature. Then the space of psc metrics in $[g]$ is contractible.

Reformulation and non-compact manifolds

Let $g=u^{4 /(n-2)} g_{0}, g_{0}$ a complete metric on M.
Define Yamabe operator $L^{g_{0}}:=4 \frac{n-1}{n-2} \Delta^{g_{0}}+\mathrm{scal}^{g_{0}}$.

$$
\widetilde{Y}_{M}\left(g_{0}\right):=\inf \left\{\left.\frac{\int_{M} u L^{g_{0}} u \mathrm{dvol}^{g_{0}}}{\|u\|_{L^{2 n /(n-2)}\left(M, g_{0}\right)}^{2}} \right\rvert\, 0 \not \equiv u \in \mathcal{C}_{c}^{\infty}(M,[0, \infty))\right\}
$$

For compact M we have

$$
Y_{M}\left(\left[g_{0}\right]\right)=\widetilde{Y}_{M}\left(g_{0}\right)
$$

For non-compact M we use this as a definition.
\leadsto related work on $Y_{M}(g)$ for M non-compact by Akutagawa, Große, Ammann\&Große, and others.

Obata's theorem

Theorem (Obata, 1971)

Assume:

- M is connected and compact, $n=\operatorname{dim} M \geq 3$
- g_{0} is an Einstein metric on M
- $g=u^{4 /(n-2)} g_{0}$ with scal ${ }^{g}$ constant
- $\left(M, g_{0}\right)$ not conformal to \mathbb{S}^{n}

Then u is constant.
Conclusion

$$
\mathcal{E}_{M}\left(g_{0}\right)=Y\left(M,\left[g_{0}\right]\right)
$$

This conclusion also holds on M compact if g_{0} is a non-Einstein metric with scal = const ≤ 0 (Maximum principle).
So in these two cases, we have determined $Y\left(M,\left[g_{0}\right]\right)$. However, in general, it is difficult to get explicit "good" lower bounds for $Y\left(M,\left[g_{0}\right]\right)$.

Recap: Surgery

We consider an embedding of $\iota: S^{k} \times D^{n-k} \hookrightarrow M^{n}$.
Define $M^{\#}:=\left(M \backslash \iota\left(S^{k} \times D^{n-k}\right)\right) \cup_{S^{k} \times S^{n-k-1}}\left(D^{k+1} \times S^{n-k-1}\right)$.
We say: $M^{\#}$ arises by k-dimensional surgery from M.

Picture for $n=2, k=1$

Picture for $n=2, k=1$

Gromov-Lawson surgery for Yamabe constants

Assume that $M^{\#}$ arises from M by a surgery of dimension
$k \leq n-3$.
For $\tau \in(0, \infty)$ and $g \in \mathcal{R}(M)$ we define a metric
$\mathcal{G} \mathcal{L}_{\tau}(g) \in \mathcal{R}\left(M^{\#}\right)$.
Theorem A (Ammann\&Dahl\&Humbert (2013))
There is a constant $\Lambda_{n, k}>0$ with:

$$
Y_{M *}\left(\mathcal{G} \mathcal{L}_{\tau}(g)\right) \geq \min \left\{Y_{M}(g), \Lambda_{n, k}\right\}-o_{\tau}(1) .
$$

- Our metric $\mathcal{G} \mathcal{L}_{\tau}(g)$ is similar to the Gromov-Lawson construction for positive scalar curvature metrics.
- Technical implementation differs.
- Special cases were known, e.g. a version with 0 instead $\Lambda_{n, k}>$ is due to Petean, the $k=0$-case is due to O . Kobayashi, and the perservation of positivity is the classical Gromov\&Lawson/Schoen\&Yau result about psc-preserving surgeries.

Technical implementation

We write close to $S:=\iota\left(S^{k} \times\{0\}\right), r(x):=d(x, S)$

$$
\left.g \approx g\right|_{s}+d r^{2}+r^{2} g_{\text {round }}^{n-k-1}
$$

where $g_{\mathrm{round}}^{n-k-1}$ is the round metric on S^{n-k-1}.
$t:=-\log r$.

$$
\left.\frac{1}{r^{2}} g \approx e^{2 t} g\right|_{s}+d t^{2}+g_{\text {round }}^{n-k-1}
$$

We define a metric

$$
\mathcal{G} \mathcal{L}_{\tau}(g)= \begin{cases}g & \text { for } r>r_{1} \\ \frac{1}{r^{2}} g & \text { for } r \in\left(2 \rho, r_{0}\right) \\ \left.f^{2}(t) g\right|_{S}+d t^{2}+g_{\text {round }}^{n-k-1} & \text { for } r<2 \rho\end{cases}
$$

that extends to a metric on $M^{\#}$.

$$
\stackrel{g_{\rho}=g}{\longleftrightarrow} \stackrel{g_{\rho}=F^{2} g}{\stackrel{S^{n-k-1} \text { has constant length }}{\longleftrightarrow}}
$$

Spaces of metrics with Yamabe constants above λ

$$
Y_{M}^{-1}((\lambda, \infty)):=\left\{g \in \mathcal{R}(M) \mid Y_{M}([g])>\lambda\right\}
$$

$$
\begin{aligned}
Y_{M}^{-1}((0, \infty)) & :=\left\{g \in \mathcal{R}(M) \mid Y_{M}([g])>0\right\} \\
& =\{g \in \mathcal{R}(M) \mid[g] \text { contains a psc metric }\} \\
& \simeq \mathcal{R}_{+}(M):=\left\{g \in \mathcal{R}(M) \mid \text { scal }^{M}>0\right\}
\end{aligned}
$$

Parametrized version of Theorem A

Assume that $M^{\#}$ is obtained by a k-dimensional surgery from M.

$$
Y_{M}^{-1}((\lambda, \infty)) \xrightarrow{\mathcal{G} \mathcal{L}} Y_{M \#}^{-1}((\lambda, \infty))
$$

A generalized Chernysh-Walsh result follows then with the same analytical tools as in Thm. A = ADH 2013.
Theorem B (A. 2022, in prep.)
The map $\mathcal{G L}: Y_{M}^{-1}((\lambda, \infty)) \rightarrow Y_{M^{\#}}^{-1}((\lambda, \infty))$ is a (weak) homotopy equivalence for $2 \leq k \leq n-3$.

The constants $\Lambda_{n, k}$

Obviously $\Lambda_{n, k}>0$ is not unique, the larger the better. Unless $n=k+3 \geq 7$, our result holds for

$$
\Lambda_{n, k}:=\inf _{c \in[0,1]} Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right)
$$

where \mathbb{H}_{c}^{k+1} is the simply connected complete Riemannian manifolds of dimension $k+1$ with sec $=-c^{2}$.

$$
\Lambda_{n}:=\min \left\{\Lambda_{n, 0}, \Lambda_{n, 1}, \ldots, \Lambda_{n, n-3}\right\}
$$

Examples:
$\Lambda_{4} \geq 38.9, Y\left(\mathbb{S}^{4}\right)=61.562 \ldots$
$\Lambda_{5} \geq 45.1, Y\left(\mathbb{S}^{5}\right)=78.996 \ldots$

The constants $\Lambda_{n, k}\left(\right.$ ct'd $\left.^{\prime}\right)$

In most cases we get some explicit values for $\Lambda_{n, k}>0$:

n	k	known $\Lambda_{n, k}$	conjectured $\wedge_{n, k}$	$Y\left(\mathbb{S}^{n}\right)$
3	0	43.82323	43.82323	43.82323
4	0	61.56239	61.56239	61.56239
4	1	≥ 38.9	59.40481	61.56239
5	0	78.99686	78.99686	78.99686
5	1	≥ 51.2	78.18644	78.99686
5	2	≥ 45.1	75.39687	78.99686

The blue values rely on special investigations by Petean and Ruiz.

n	k	known $\Lambda_{n, k}$	conjectured $\Lambda_{n, k}$	$Y\left({ }^{n}\right)$
6	0	96.29728	96.29728	96.29728
6	1	>0	95.87367	96.29728
6	2	≥ 54.77	94.71444	96.29728
6	3	≥ 49.98	91.68339	96.29728
7	0	113.5272	113.5272	113.5272
7	1	>0	113.2670	113.5272
7	2	≥ 74.50	112.6214	113.5272
7	3	≥ 74.50	111.2934	113.5272
7	4	>0	108.1625	113.5272

\rightarrow More values for $\Lambda_{n, k} \rightarrow$ To Conjectures
For $n \geq 7$, there are still problems with the explicit values for $k=1$ and $k=n-3$.

(Smooth) Yamabe invariant

For M compact:

$$
\sigma(M):=\sup _{[g] \subset \mathcal{R}(M)} Y(M,[g]) \in\left(-\infty, Y\left(\mathbb{S}^{n}\right)\right]
$$

smooth Yamabe invariant. (Introduced by O. Kobayashi and R. Schoen)

Remark
M caries a psc metric $\Leftrightarrow \sigma(M)>0$

Supreme Einstein metrics

Following LeBrun, we say a Riemannian Einstein metric g on a closed manifold M is a supreme Einstein metric if

$$
\mathcal{E}_{M}(g)=Y_{M}([g])=\sigma(M) .
$$

The following Riem. manifolds are supreme Einstein:

- Round spheres trivial
- Flat tori (Gromov\&Lawson, Schoen\&Yau $\approx^{\prime} 83$) E.g. enlargeable Manifolds
- $\mathbb{R} P^{3}$ (Bray\&Neves '04) Inverse mean curvature flow
- Compact quotients of 3-dim. hyperbolic space (Perelman, M. Anderson '06 (sketch), Kleiner\&Lott '08) Ricci flow
- $\left(\mathbb{C} P^{2}, g_{\mathrm{FS}}\right)$ (LeBrun) Seiberg-Witten theory, index theory \leadsto next talk
If our conjectured values for $\Lambda_{n, k}$ hold, then $\left(\mathbb{C} P^{3}, g_{\mathrm{FS}}\right)$ is not a supreme Einstein metric.

Manifolds with $0<\sigma(M)<\Lambda_{n}$

Are there M with

$$
0<\sigma(M)<\Lambda_{n}:=\min \left\{\Lambda_{n, 0}, \ldots, \Lambda_{n, n-3}\right\} ?
$$

Conjecture (Schoen)
If the finite group $\Gamma \subset \operatorname{SO}(n+1)$ acts freely on S^{n}, then the round metric $g_{\text {round }}^{n}$ on S^{n} / Γ is a supreme Einstein metric.
The conjecture would imply

$$
\begin{aligned}
\mathcal{E}_{S^{n} / \Gamma}\left(g_{\mathrm{round}}^{n}\right) & =Y\left(S^{n} / \Gamma, g_{\mathrm{round}}^{n}\right)=\sigma\left(S^{n} / \Gamma\right) \\
& =n(n-1) \frac{\operatorname{vol}\left(\mathbb{S}^{n}\right)^{2 / n}}{(\# \Gamma)^{2 / n}} \xrightarrow{\# \Gamma \rightarrow \infty} 0 .
\end{aligned}
$$

Unfortunately, only known for $\Gamma=\{1\}$ and $\mathbb{R} P^{3}$.

A Monotonicity formula for surgery

Corollary (ADH, follows from Theo. A)
Let $M^{\#}$ be obtained from M by k-dimensional surgery, $0 \leq k \leq n-3$. Then

$$
\sigma\left(M^{\#}\right) \geq \min \left\{\sigma(M), \Lambda_{n, k}\right\}
$$

We define $\Lambda_{n}:=\min \left\{\Lambda_{n, 0}, \ldots, \Lambda_{n, n-3}\right\}$ and
$\chi_{\Lambda_{n}}(t):=\max \left\{\min \left\{t, \Lambda_{n}\right\}, 0\right\}$.

For the truncated Yamabe invariant $\chi_{\Lambda_{n}}(\sigma(M))$ we have

$$
\chi_{\Lambda_{n}}\left(\sigma\left(M^{\#}\right)\right) \geq \chi_{\Lambda_{n}}(\sigma(M))
$$

and we have equality for $2 \leq k \leq n-3$.

Bordism results

Let $n \geq 5$, Γ finitely presented
Bordism techniques (Gromov-Lawson, Stolz,...) and Theorem A yield a well-defined map

$$
\begin{aligned}
s_{\Gamma}: \Omega_{n}^{\text {spin }}(B \Gamma) & \rightarrow \mathbb{R} \\
{[M, f] } & \mapsto
\end{aligned} \chi_{\Lambda_{n}}(\sigma(M)), ~ l
$$

where we chose a representative with a connected non-empty M and $f_{*}: \pi_{1}(M) \rightarrow \Gamma$ bijective.

$$
s_{\Gamma}(a+b) \geq \min \left\{s_{\Gamma}(a), s_{\Gamma}(b)\right\}
$$

We get subgroups $s_{\Gamma}^{-1}((\lambda, \infty)) \subset \Omega_{n}^{\text {spin }}(B \Gamma)$.

Descend to ko($В \Gamma)$

Recall from index theory

$$
\Omega_{n}^{\text {spin }}(B \Gamma) \xrightarrow{D} \mathrm{ko}_{n}(B \Gamma) \xrightarrow{\text { per }} \mathrm{KO}_{n}(B \Gamma) \xrightarrow{A} \mathrm{KO}_{n}\left(C^{*} \Gamma\right)
$$

Descend to ko($В \Gamma)$

Recall from index theory

Descend to ko($Б Г)$

Recall from index theory

Theorem C (Ammann\&Otoba, in prep.)
For a slightly adapted constant \wedge_{n}, the truncated Yamabe invariant descents to a map $\operatorname{ko}_{n}(B \Gamma) \rightarrow \mathbb{R}$.

Idea of proof
One has to study Yamabe invariants of $\operatorname{ker}\left(\Omega_{n}^{\text {Spin }}(B \Gamma) \xrightarrow{D} \operatorname{ko}_{n}(B \Gamma)\right)$.
Given by Baas-Sullivan singular manifolds, obtained by gluing of multi-HIP P^{2}-bundles, see work by Hanke.

Interpretations of Theorem B

Theorem B'
Let $\lambda \in\left[0, \Lambda_{n, k}\right)$. The map $\mathcal{G L}: Y_{M}^{-1}((\lambda, \infty)) \rightarrow Y_{M \#}^{-1}((\lambda, \infty))$ is well-defined (up to homotopy) for $0 \leq k \leq n-3$ and is a (weak) homotopy equivalences for $2 \leq k \leq n-3$.

In fact these maps and the associated homotopies are compatible with the inclusion associated to $\lambda \geq \tilde{\lambda}$.
Thus we get a morphism of "filtered topological spaces"

$$
\mathcal{G \mathcal { L }}:\left(Y_{M}^{-1}((\lambda, \infty))\right)_{\lambda \in\left[0, \Lambda_{n, k}\right)} \rightarrow\left(Y_{M \#}^{-1}((\lambda, \infty))\right)_{\lambda \in\left[0, \Lambda_{n, k}\right)},
$$

which are "filtered homotopy equivalences" for $2 \leq k \leq n-3$.

Higher Yamabe invariants

Yamabe invariant $\sigma(M):=\sup \left\{\lambda \in \mathbb{R} \mid Y_{M}^{-1}((\lambda, \infty)) \neq \varnothing\right\}$

Higher Yamabe invariants

Yamabe invariant $\sigma(M):=\sup \left\{\lambda \in \mathbb{R} \mid Y_{M}^{-1}((\lambda, \infty)) \neq \varnothing\right\}$
$\pi_{-1}(\varnothing)=\varnothing, \quad \pi_{-1}(\underbrace{S}_{\neq *})=\{*\}$
Functor from

$$
\begin{aligned}
(\mathbb{R}, \geq) & \longrightarrow(\{\varnothing,\{*\}\}, \text { maps }) \\
\lambda & \longmapsto \pi_{-1}\left(Y_{M}^{-1}((\lambda, \infty))\right) \\
\lambda \geq \tilde{\lambda} & \longmapsto \pi_{-1}(\hookrightarrow)
\end{aligned}
$$

So far: nothing than a very complicated way to characterize a real number!

Higher Yamabe invariants

Truncated Yamabe invariant $\chi_{\Lambda_{n}}(\sigma(M))$
$\pi_{-1}(\varnothing)=\varnothing, \quad \pi_{-1}(\underbrace{S}_{\neq *})=\{*\}$
Essentially a functor from

$$
\begin{aligned}
\left(\left[0, \wedge_{n}\right), \geq\right) & \longrightarrow(\{\varnothing,\{*\}\}, \text { maps }) \\
\lambda & \longmapsto \pi_{-1}\left(Y_{M}^{-1}((\lambda, \infty))\right) \\
\lambda \geq \tilde{\lambda} & \longmapsto \pi_{-1}(\hookrightarrow)
\end{aligned}
$$

So far: nothing than a very complicated way to characterize a number in $\left[0, \Lambda_{n}\right]$!

Higher Yamabe invariants, ct'd

Higher Yamabe invariant $\left.\chi_{\Lambda_{n}}\left(\sigma^{k}(M)\right)\right), k \in \mathbb{N} \cup\{0\}$. For $k=0$ we get a functor from

$$
\begin{array}{rll}
\left(\left[0, \Lambda_{n}\right), \geq\right) & \xrightarrow[\chi_{\Lambda_{n}}\left(\sigma^{k}\right)]{ } & (\text { sets, maps }) \\
\lambda & \longmapsto & \pi_{0}\left(Y_{M}^{-1}((\lambda, \infty))\right) \\
\lambda \geq \tilde{\lambda} & \longmapsto & \pi_{0}(\hookrightarrow)
\end{array}
$$

For $k>1$ we get a functor from

$$
\begin{array}{rll}
\left(\left[0, \Lambda_{n}\right), \geq\right) & \xrightarrow[\chi_{\Lambda_{n}}\left(\sigma^{k}\right)]{ } & \left(\operatorname{grps}^{\pi_{0}}, \text { hom }^{\pi_{0}}\right) \\
\lambda & \longmapsto & \pi_{k}\left(Y_{M}^{-1}((\lambda, \infty))\right) \\
\lambda \geq \tilde{\lambda} & \longmapsto & \pi_{k}(\hookrightarrow)
\end{array}
$$

For $k=1$: similar with conjugacy classes.

Theorem B implies that all higher (truncated) Yamabe invariants are invariant under suitable bordisms, i.e. those that can be decomposed in surgeries of dimension $k \in\{2,3, \ldots, n-3\}$.

We expect - but we are far from a proof - that the higher Yamabe invariants of $\mathbb{C} P^{3}$ are non-trivial for $82.986 \leq \lambda \leq 96.297$.

Sketch of Proof for Theorem A

Theorem A (Ammann\&DahI\&Humbert (2013))
There is a constant $\Lambda_{n, k}>0$ with:

$$
Y_{M \#}\left(\mathcal{G} \mathcal{L}_{\tau}(g)\right) \geq \min \left\{Y_{M}(g), \Lambda_{n, k}\right\}-o_{\tau}(1)
$$

Assume we have $\tau_{i} \rightarrow \infty$ with $g_{i}:=\mathcal{G} \mathcal{L}_{\tau_{i}}(g)$ and

$$
\lambda_{\infty}:=\lim _{i \rightarrow \infty} Y_{M \#}\left(g_{i}\right)<Y(M, g)
$$

Choose Yamabe minimizer $\tilde{g}_{i} \in\left[g_{i}\right]$.
After passing to a subsequence, then for some $p_{i} \in M^{\#}$

$$
\left(M^{\#}, \tilde{g}_{i}, p_{i}\right) \rightarrow\left(N, h, p_{\infty}\right)
$$

in the pointed Gromov-Hausdorff- C^{∞}-sense.

- Either: after removing singularities from $\left(N, h, p_{\infty}\right)$ we get (M, g); then $\lambda_{\infty} \geq Y(M, g)$. 纟
- $\operatorname{Or}\left(N, h, p_{\infty}\right)$ is in a well-controlled family of model spaces. $\leadsto \Lambda_{n, k}$

Sketch of Proof for Theorem B

Theorem B (A. 2022, in prep.)
The map $\mathcal{G L}: Y_{M}^{-1}((\lambda, \infty)) \rightarrow Y_{M \#}^{-1}((\lambda, \infty))$ is a (weak) homotopy equivalence for $2 \leq k \leq n-3$.

Well-definedness
Roughly as the proof of Theorem A, but in families.
Weak homotopy equivalence
Split the construction in several steps, $\mathcal{R}_{>\lambda}(M):=Y_{M}^{-1}((\lambda, \infty))$ Step no. 1: $\mathcal{G} \mathcal{L}_{1}$ makes the normal exponential maps coincide for all metrics in compact family, and cuts off the lower order terms.
$\mathcal{G} \mathcal{L}^{1}: \mathcal{R}_{>\lambda}(M) \rightarrow \mathcal{R}_{>\lambda}^{S_{\lambda}^{k}, \epsilon}(M)$ is a homotopy inverse to the inclusion $\mathcal{R}_{>\lambda}^{S^{k}, \epsilon}(M) \hookrightarrow \mathcal{R}_{>\lambda}(M)$

Step no. 2 Make a conformal deformation that makes the metrics in the normal direction of torpedo type. Obviously this step does not affect the Yamabe constant. Thus trivially we have a homotopy equivalence:

$$
\mathcal{G} \mathcal{L}^{2}: \mathcal{R}_{>\lambda}^{S^{k}, \epsilon}(M) \rightarrow \mathcal{R}_{>\lambda}^{S^{k}, \epsilon, \text { infl-torp }}(M)
$$

Step no. 3 Slow down the inflation in tangential direction slowly. One analyses certain blow-up limits in analogy to the proof of Theorem A. Then remove the curvature of the normal bundle of S. Below $\Lambda_{n, k}$ one obtains a homotopy equivalence.

$$
\mathcal{G} \mathcal{L}^{3}: \mathcal{R}_{>\lambda}^{S_{\lambda}^{k}, \epsilon \text {,infl-torp }}(M) \rightarrow \mathcal{R}_{>\lambda}^{S_{\lambda}^{\kappa}, \epsilon^{\prime}, \text { torp,prod }}(M)
$$

$$
\xrightarrow{g_{\rho}=g \quad g_{\rho}=F^{2} g}
$$

Step no. 4 Let the torpedos go to infinity. We get a convergence against manifolds with an end isometric (in a standard way) to

$$
\left(S^{k} \times S^{n-k-1} \times[0, \infty), \mu_{1} g_{\mathrm{round}}^{k}+\mu_{2} g_{\mathrm{round}}^{n-k-1}+\mathrm{d} t^{2}\right)
$$

Get a homotopy equivalence

$$
\mathcal{G} \mathcal{L}^{4}: \mathcal{R}_{>\lambda}^{S^{k}, \epsilon^{\prime}, \text { torp,prod }}(M) \rightarrow \mathcal{R}_{>\lambda}^{S^{k} \times S^{n-k-1}, \text { std }}\left(M \backslash \iota\left(S^{k} \times 0\right)\right)
$$

\qquad
$\xrightarrow{S^{n-k-1} \text { has constant length }}$

$$
S^{n-k-1} \times S^{k} \text { has constant length }
$$

With

$$
M \backslash \iota\left(S^{k} \times 0\right) \cong M^{\#} \backslash \iota^{\#}\left(S^{n-k-1} \times 0\right)
$$

we get
$\mathcal{R}_{>\lambda}^{S^{k} \times S^{n-k-1}, \text { std }}\left(M \backslash \iota\left(S^{k} \times 0\right)\right) \cong \mathcal{R}_{>\lambda}^{S^{n-k-1} \times S^{k}, s t d}\left(M^{\#} \backslash \iota{ }^{\#}\left(S^{n-k-1} \times 0\right)\right)$,
and this completes the proof.

Thanks for the attention.
$Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right) \geq Y\left(\mathbb{R}^{k+1} \times \mathbb{S}^{n-k-1}\right)$
Conjecture \#2:
The infimum in the definition of $Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right)$ is attained by an $O(k+1) \times O(n-k)$ invariant function if $0 \leq c<1$.
$O(n-k)$-invariance is difficult,
$O(k+1)$-invariance follows from standard reflection methods
Comments
If we assume Conjecture \#2, then Conjecture \#1 reduces to an ODE and $Y\left(\mathbb{H}_{c}^{k+1} \times \mathbb{S}^{n-k-1}\right)$ can be calculated numerically. Assuming Conjecture \#2, a maple calculation confirmed Conjecture \#1 for all tested n, k and c.
The conjecture would imply:

$$
\sigma\left(S^{2} \times S^{2}\right) \geq \Lambda_{4,1}=59.4 \ldots
$$

Compare this to

$$
Y\left(\mathbb{S}^{4}\right)=61.5 \ldots \quad Y\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)=50.2 \ldots \quad \sigma\left(\mathbb{C} P^{2}\right)=53.31 \ldots
$$

More values for $\Lambda_{n, k}$

n	k	$\Lambda_{n, k} \geq$ known	$\Lambda_{n, k}=$ conjectured	$Y\left(\mathbb{S}^{n}\right)$
3	0	43.8	43.8	43.8
4	0	61.5	61.5	61.5
4	1	38.9	59.4	61.5
5	0	78.9	78.9	78.9
5	1	56.6	78.1	78.9
5	2	45.1	75.3	78.9
6	0	96.2	96.2	96.2
6	1	>0	95.8	96.2
6	2	54.7	94.7	96.2
6	3	49.9	91.6	96.2
7	0	113.5	113.5	113.5
7	1	>0	113.2	113.5
7	2	74.5	112.6	113.5
7	3	74.5	111.2	113.5
7	4	>0	108.1	113.5

n	k	$\Lambda_{n, k} \geq$ known	$\Lambda_{n, k}=$ conjectured	$Y\left(\mathbb{S}^{n}\right)$
8	0	130.7	130.7	130.7
8	1	>0	130.5	130.7
8	2	92.2	130.1	130.7
8	3	95.7	129.3	130.7
8	4	92.2	127.9	130.7
8	5	>0	124.7	130.7
9	0	147.8	147.8	147.8
9	1	109.2	147.7	147.8
9	2	109.4	147.4	147.8
9	3	114.3	146.9	147.8
9	4	114.3	146.1	147.8
9	5	109.4	144.6	147.8
9	6	>0	141.4	147.8

n	k	$\Lambda_{n, k} \geq$ known	$\Lambda_{n, k}=$ conjectured
10	0	165.0	
10	1	102.6	
10	2	126.4	
10	3	132.0	
10	4	133.3	165.02
10	5	132.0	165.02
10	6	126.4	165.02
10	7	>0	165.02
11	0	182.1	165.02
11	1	>0	165.02
11	2	143.3	165.02
11	3	149.4	182.1
11	4	151.3	182.1
11	5	151.3	182.1
11	6	149.4	182.1
11	7	143.3	
11	8	>0	

