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Einstein-Hilbert functional
Let M be a compact n-dimensional manifold, n ≥ 3.
R(M) ∶= {Riem. metrics on M}.
The renormalised Einstein-Hilbert functional is

EM ∶ R(M) → R, EM(g) ∶= ∫M scalg dvolg

vol(M,g)(n−2)/n

[g0] ∶= {u4/(n−2)g0 ∣u > 0}.

{Stationary points of EM ∶ [g0] → R } = {metrics with constant
scalar curvature}

{Stationary points of EM ∶ R(M) → R } = {Einstein metrics}



(Conformal) Yamabe constant

The (conformal) Yamabe constant is defined as

YM([g]) ∶= Y (M, [g]) ∶= inf
g̃∈[g]
EM(g̃) > −∞.

If Sn denote the sphere with the standard structure, then

YM([g]) ≤ Y (Sn).

Yamabe problem EM ∶ [g] → R attains its infimum.
Minimizers have scal = c.

Proven by Trudinger 1968, Aubin 1976, Schoen (&Yau)) ≈ 1984

Remark
YM([g]) > 0 if and only if [g] contains a metric of positive scalar
curvature. Then the space of psc metrics in [g] is contractible.



Reformulation and non-compact manifolds

Let g = u4/(n−2)g0, g0 a complete metric on M.
Define Yamabe operator Lg0 ∶= 4n−1

n−2∆g0 + scalg0 .

ỸM(g0) ∶= inf

⎧⎪⎪⎨⎪⎪⎩
∫M u Lg0u dvolg0

∥u∥2
L2n/(n−2)(M,g0)

∣ 0 /≡ u ∈ C∞c (M, [0,∞))
⎫⎪⎪⎬⎪⎪⎭

For compact M we have

YM([g0]) = ỸM(g0).

For non-compact M we use this as a definition.

↝ related work on YM(g) for M non-compact by Akutagawa,
Große, Ammann&Große, and others.



Obata’s theorem

Theorem (Obata, 1971)
Assume:
▸ M is connected and compact, n = dim M ≥ 3
▸ g0 is an Einstein metric on M
▸ g = u4/(n−2)g0 with scalg constant
▸ (M,g0) not conformal to Sn

Then u is constant.

Conclusion
EM(g0) = Y (M, [g0])

This conclusion also holds on M compact if g0 is a non-Einstein
metric with scal = const ≤ 0 (Maximum principle).
So in these two cases, we have determined Y (M, [g0]).
However, in general, it is difficult to get explicit “good” lower
bounds for Y (M, [g0]).



Recap: Surgery
We consider an embedding of ι ∶ Sk ×Dn−k ↪Ð→Mn.
Define M# ∶=(M ∖ ι(Sk ×

○

Dn−k)) ∪Sk×Sn−k−1 (Dk+1 ×Sn−k−1).

We say: M# arises by k -dimensional surgery from M.

Mn
S=ι(Sk×{0})

Picture for n=2, k=1



Mn ∖ ι(Sk ×
○

Dn−k)

Picture for n=2, k=1



Gromov-Lawson surgery for Yamabe constants
Assume that M# arises from M by a surgery of dimension
k ≤ n − 3.
For τ ∈ (0,∞) and g ∈ R(M) we define a metric
GLτ(g) ∈ R(M#).
Theorem A (Ammann&Dahl&Humbert (2013))
There is a constant Λn,k > 0 with:

YM#(GLτ(g)) ≥ min{YM(g),Λn,k} − oτ(1).

▸ Our metric GLτ(g) is similar to the Gromov-Lawson
construction for positive scalar curvature metrics.

▸ Technical implementation differs.
▸ Special cases were known, e.g. a version with 0 instead Λn,k > is

due to Petean, the k = 0-case is due to O. Kobayashi, and the
perservation of positivity is the classical
Gromov&Lawson/Schoen&Yau result about psc-preserving
surgeries.



Technical implementation

We write close to S ∶= ι(Sk × {0}), r(x) ∶= d(x ,S)

g ≈ g∣S + dr2 + r2gn−k−1
round

where gn−k−1
round is the round metric on Sn−k−1.

t ∶= − log r .
1
r2 g ≈ e2tg∣S + dt2 + gn−k−1

round

We define a metric

GLτ(g) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

g for r > r1
1
r2 g for r ∈ (2ρ, r0)
f 2(t)g∣S + dt2 + gn−k−1

round for r < 2ρ

that extends to a metric on M#.



r1

r0 2ρ ρ

r1

r0

2ρ

ρ

gρ = g gρ = F 2g

Sn−k−1 has constant length



Spaces of metrics with Yamabe constants above λ

Y −1
M ((λ,∞)) ∶= {g ∈ R(M) ∣ YM([g]) > λ}

Y −1
M ((0,∞)) ∶= {g ∈ R(M) ∣ YM([g]) > 0}

= {g ∈ R(M) ∣ [g] contains a psc metric}
≃ R+(M) ∶= {g ∈ R(M) ∣ scalM > 0}



Parametrized version of Theorem A

Assume that M# is obtained by a k -dimensional surgery
from M.

Y −1
M ((λ,∞)) GLÐÐÐ→ Y −1

M#((λ,∞))

A generalized Chernysh-Walsh result follows then with the
same analytical tools as in Thm. A = ADH 2013.

Theorem B (A. 2022, in prep.)
The map GL ∶ Y −1

M ((λ,∞)) → Y −1
M#((λ,∞)) is a (weak)

homotopy equivalence for 2 ≤ k ≤ n − 3.



The constants Λn,k

Obviously Λn,k > 0 is not unique, the larger the better.
Unless n = k + 3 ≥ 7, our result holds for

Λn,k ∶= inf
c∈[0,1]

Y (Hk+1
c × Sn−k−1),

where Hk+1
c is the simply connected complete Riemannian

manifolds of dimension k + 1 with sec = −c2.

Λn ∶= min{Λn,0,Λn,1, . . . ,Λn,n−3}

Examples:
Λ4 ≥ 38.9, Y (S4) = 61.562 . . .
Λ5 ≥ 45.1, Y (S5) = 78.996 . . .



The constants Λn,k (ct’d)

In most cases we get some explicit values for Λn,k > 0:

n k known Λn,k conjectured Λn,k Y (Sn)
3 0 43.82323 43.82323 43.82323

4 0 61.56239 61.56239 61.56239
4 1 ≥ 38.9 59.40481 61.56239

5 0 78.99686 78.99686 78.99686
5 1 ≥ 51.2 78.18644 78.99686
5 2 ≥ 45.1 75.39687 78.99686

The blue values rely on special investigations by Petean and
Ruiz.



n k known Λn,k conjectured Λn,k Y (n)
6 0 96.29728 96.29728 96.29728
6 1 > 0 95.87367 96.29728
6 2 ≥ 54.77 94.71444 96.29728
6 3 ≥ 49.98 91.68339 96.29728

7 0 113.5272 113.5272 113.5272
7 1 > 0 113.2670 113.5272
7 2 ≥ 74.50 112.6214 113.5272
7 3 ≥ 74.50 111.2934 113.5272
7 4 > 0 108.1625 113.5272

More values for Λn,k To Conjectures

For n ≥ 7, there are still problems with the explicit values for
k = 1 and k = n − 3.



(Smooth) Yamabe invariant

For M compact:

σ(M) ∶= sup
[g]⊂R(M)

Y (M, [g]) ∈ (−∞,Y (Sn)]

smooth Yamabe invariant. (Introduced by O. Kobayashi and R. Schoen)

Remark
M caries a psc metric ⇔ σ(M) > 0



Supreme Einstein metrics

Following LeBrun, we say a Riemannian Einstein metric g on a
closed manifold M is a supreme Einstein metric if

EM(g) = YM([g]) = σ(M).

The following Riem. manifolds are supreme Einstein:
▸ Round spheres trivial
▸ Flat tori (Gromov&Lawson, Schoen&Yau ≈′ 83)

E.g. enlargeable Manifolds
▸ RP3 (Bray&Neves ’04) Inverse mean curvature flow
▸ Compact quotients of 3-dim. hyperbolic space (Perelman,

M. Anderson ’06 (sketch), Kleiner&Lott ’08) Ricci flow
▸ (CP2,gFS) (LeBrun) Seiberg-Witten theory, index theory ↝

next talk
If our conjectured values for Λn,k hold, then (CP3,gFS) is not a
supreme Einstein metric.



Manifolds with 0 < σ(M) < Λn

Are there M with

0 < σ(M) < Λn ∶= min{Λn,0, . . . ,Λn,n−3} ?

Conjecture (Schoen)
If the finite group Γ ⊂ SO(n + 1) acts freely on Sn, then the
round metric gn

round on Sn/Γ is a supreme Einstein metric.
The conjecture would imply

ESn/Γ(gn
round) = Y (Sn/Γ,gn

round) = σ(Sn/Γ)

= n(n − 1)vol(Sn)2/n

(#Γ)2/n

#Γ→∞ÐÐÐÐ→ 0.

Unfortunately, only known for Γ = {1} and RP3.



A Monotonicity formula for surgery

Corollary (ADH, follows from Theo. A)
Let M# be obtained from M by k-dimensional surgery,
0 ≤ k ≤ n − 3. Then

σ(M#) ≥ min{σ(M),Λn,k}

We define Λn ∶= min{Λn,0, . . . ,Λn,n−3} and

χΛn
(t) ∶= max{min{t ,Λn},0}.

χ
Λn

Λn

Λn Y(Sn
)

For the truncated Yamabe invariant χΛn
(σ(M)) we have

χΛn
(σ(M#)) ≥ χΛn

(σ(M))

and we have equality for 2 ≤ k ≤ n − 3.



Bordism results

Let n ≥ 5, Γ finitely presented
Bordism techniques (Gromov-Lawson, Stolz,. . . ) and
Theorem A yield a well-defined map

sΓ ∶ Ωspin
n (BΓ) → R

[M, f ] ↦ χΛn
(σ(M))

where we chose a representative with a connected
non-empty M and f∗ ∶ π1(M) → Γ bijective.

sΓ(a + b) ≥ min{sΓ(a),sΓ(b)}

We get subgroups s−1
Γ ((λ,∞)) ⊂ Ωspin

n (BΓ).



Descend to ko(BΓ)
Recall from index theory

Ωspin
n (BΓ) kon(BΓ) KOn(BΓ) KOn(C∗Γ)

R

D per A

sΓ

? ?

?
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Descend to ko(BΓ)
Recall from index theory

Ωspin
n (BΓ) kon(BΓ) KOn(BΓ) KOn(C∗π)

R

D per A

sΓ

ŝΓ ?

?

Theorem C (Ammann&Otoba, in prep.)
For a slightly adapted constant Λn, the truncated Yamabe
invariant descents to a map kon(BΓ) → R.

Idea of proof
One has to study Yamabe invariants of

ker(ΩSpin
n (BΓ) DÐ→ kon(BΓ)).

Given by Baas-Sullivan singular manifolds, obtained by gluing
of multi-HP2-bundles, see work by Hanke.



Interpretations of Theorem B

Theorem B’
Let λ ∈ [0,Λn,k). The map GL ∶ Y −1

M ((λ,∞)) → Y −1
M#((λ,∞)) is

well-defined (up to homotopy) for 0 ≤ k ≤ n − 3 and is a (weak)
homotopy equivalences for 2 ≤ k ≤ n − 3.

In fact these maps and the associated homotopies are
compatible with the inclusion associated to λ ≥ λ̃.
Thus we get a morphism of “filtered topological spaces”

GL ∶ (Y −1
M ((λ,∞)))

λ∈[0,Λn,k)
→ (Y −1

M#((λ,∞)))
λ∈[0,Λn,k)

,

which are “filtered homotopy equivalences” for 2 ≤ k ≤ n − 3.



Higher Yamabe invariants

Yamabe invariant σ(M) ∶= sup{λ ∈ R ∣ Y −1
M ((λ,∞)) ≠ ∅}

π−1(∅) = ∅, π−1(S®
≠∗

) = {∗}

from

(,≥) σ−1ÐÐ→ ({∅,{∗}},maps)

λ z→ π−1 (Y −1
M ((λ,∞)))

λ ≥ λ̃ z→ π−1(↪Ð→)

So far: nothing than a very complicated way to characterize a !



Higher Yamabe invariants

Yamabe invariant σ(M) ∶= sup{λ ∈ R ∣ Y −1
M ((λ,∞)) ≠ ∅}

π−1(∅) = ∅, π−1(S®
≠∗

) = {∗}

Functor from

(R,≥) σ−1ÐÐ→ ({∅,{∗}},maps)

λ z→ π−1 (Y −1
M ((λ,∞)))

λ ≥ λ̃ z→ π−1(↪Ð→)

So far: nothing than a very complicated way to characterize a
real number!



Higher Yamabe invariants

Truncated Yamabe invariant χΛn
(σ(M))

π−1(∅) = ∅, π−1(S®
≠∗

) = {∗}

Essentially a functor from

([0,Λn),≥)
σ−1ÐÐ→ ({∅,{∗}},maps)

λ z→ π−1 (Y −1
M ((λ,∞)))

λ ≥ λ̃ z→ π−1(↪Ð→)

So far: nothing than a very complicated way to characterize a
number in [0,Λn]!



Higher Yamabe invariants, ct’d

Higher Yamabe invariant χΛn
(σk(M))), k ∈ N ∪ {0}. For k = 0

we get a functor from

([0,Λn),≥)
χΛn

(σk)

ÐÐÐÐ→ (sets,maps)

λ z→ π0 (Y −1
M ((λ,∞)))

λ ≥ λ̃ z→ π0(↪Ð→)

For k > 1 we get a functor from

([0,Λn),≥)
χΛn

(σk)

ÐÐÐÐ→ (grpsπ0 ,homπ0)

λ z→ πk (Y −1
M ((λ,∞)))

λ ≥ λ̃ z→ πk(↪Ð→)

For k = 1: similar with conjugacy classes.



Theorem B implies that all higher (truncated) Yamabe invariants
are invariant under suitable bordisms, i.e. those that can be
decomposed in surgeries of dimension k ∈ {2,3, . . . ,n − 3}.

We expect – but we are far from a proof – that the higher
Yamabe invariants of CP3 are non-trivial for
82.986 ≤ λ ≤ 96.297.



Sketch of Proof for Theorem A
Theorem A (Ammann&Dahl&Humbert (2013))
There is a constant Λn,k > 0 with:

YM#(GLτ(g)) ≥ min{YM(g),Λn,k} − oτ(1).

Assume we have τi →∞ with gi ∶= GLτi (g) and

λ∞ ∶= lim
i→∞

YM#(gi) < Y (M,g).

Choose Yamabe minimizer g̃i ∈ [gi].
After passing to a subsequence, then for some pi ∈ M#

(M#, g̃i ,pi) → (N,h,p∞)

in the pointed Gromov-Hausdorff-C∞-sense.
▸ Either: after removing singularities from (N,h,p∞) we get

(M,g); then λ∞ ≥ Y (M,g). E
▸ Or (N,h,p∞) is in a well-controlled family of model spaces.
↝ Λn,k



Sketch of Proof for Theorem B

Theorem B (A. 2022, in prep.)
The map GL ∶ Y −1

M ((λ,∞)) → Y −1
M#((λ,∞)) is a (weak)

homotopy equivalence for 2 ≤ k ≤ n − 3.

Well-definedness
Roughly as the proof of Theorem A, but in families.
Weak homotopy equivalence
Split the construction in several steps, R>λ(M) ∶= Y −1

M ((λ,∞))
Step no. 1 : GL1 makes the normal exponential maps coincide
for all metrics in compact family, and cuts off the lower order
terms.
GL1 ∶ R>λ(M) → RSk ,ε

>λ (M) is a homotopy inverse to the

inclusion RSk ,ε
>λ (M) ↪Ð→R>λ(M)



Step no. 2 Make a conformal deformation that makes the
metrics in the normal direction of torpedo type. Obviously this
step does not affect the Yamabe constant. Thus trivially we
have a homotopy equivalence:

GL2 ∶ RSk ,ε
>λ (M) → RSk ,ε,infl-torp

>λ (M)



r1

r0 ρ

r1

r0

ρ

gτ = g gτ = F 2g



Step no. 3 Slow down the inflation in tangential direction slowly.
One analyses certain blow-up limits in analogy to the proof of
Theorem A. Then remove the curvature of the normal bundle of
S. Below Λn,k one obtains a homotopy equivalence.

GL3 ∶ RSk ,ε,infl-torp
>λ (M) → RSk ,ε′,torp,prod

>λ (M)



r1

r0 ρ

r1

r0

ρ

gρ = g gρ = F 2g

Sn−k−1 has constant length



Step no. 4 Let the torpedos go to infinity. We get a
convergence against manifolds with an end isometric (in a
standard way) to

(Sk ×Sn−k−1 × [0,∞), µ1gk
round + µ2gn−k−1

round + dt2).

Get a homotopy equivalence

GL4 ∶ RSk ,ε′,torp,prod
>λ (M) → RSk×Sn−k−1,std

>λ (M ∖ ι(Sk × 0)).



r1

r0 ρ

r1

r0

ρ

gρ = g gρ = F 2g

Sn−k−1 has constant length

Sn−k−1 × Sk has constant length



With
M ∖ ι(Sk × 0) ≅ M# ∖ ι#(Sn−k−1 × 0)

we get

RSk×Sn−k−1,std
>λ (M∖ι(Sk×0)) ≅ RSn−k−1×Sk ,std

>λ (M#∖ι#(Sn−k−1×0)),

and this completes the proof.



Thanks for the attention.



BackConjecture #1:
Y (Hk+1

c × Sn−k−1) ≥ Y (Rk+1 × Sn−k−1)

Conjecture #2:
The infimum in the definition of Y (Hk+1

c × Sn−k−1) is attained by
an O(k + 1) ×O(n − k) invariant function if 0 ≤ c < 1.

O(n − k)-invariance is difficult,
O(k + 1)-invariance follows from standard reflection methods

Comments
If we assume Conjecture #2, then Conjecture #1 reduces to an
ODE and Y (Hk+1

c × Sn−k−1) can be calculated numerically.
Assuming Conjecture #2, a maple calculation confirmed
Conjecture #1 for all tested n, k and c.
The conjecture would imply:

σ(S2 ×S2) ≥ Λ4,1 = 59.4...

Compare this to

Y (S4) = 61.5... Y (S2 × S2) = 50.2... σ(CP2) = 53.31...



More values for Λn,k Back

n k Λn,k ≥ Λn,k = Y (Sn)
known conjectured

3 0 43.8 43.8 43.8

4 0 61.5 61.5 61.5
4 1 38.9 59.4 61.5

5 0 78.9 78.9 78.9
5 1 56.6 78.1 78.9
5 2 45.1 75.3 78.9

6 0 96.2 96.2 96.2
6 1 > 0 95.8 96.2
6 2 54.7 94.7 96.2
6 3 49.9 91.6 96.2

7 0 113.5 113.5 113.5
7 1 > 0 113.2 113.5
7 2 74.5 112.6 113.5
7 3 74.5 111.2 113.5
7 4 > 0 108.1 113.5



Back

n k Λn,k ≥ Λn,k = Y (Sn)
known conjectured

8 0 130.7 130.7 130.7
8 1 > 0 130.5 130.7
8 2 92.2 130.1 130.7
8 3 95.7 129.3 130.7
8 4 92.2 127.9 130.7
8 5 > 0 124.7 130.7

9 0 147.8 147.8 147.8
9 1 109.2 147.7 147.8
9 2 109.4 147.4 147.8
9 3 114.3 146.9 147.8
9 4 114.3 146.1 147.8
9 5 109.4 144.6 147.8
9 6 > 0 141.4 147.8



Back

n k Λn,k ≥ Λn,k = Y (Sn)
known conjectured

10 0 165.0 165.02
10 1 102.6 165.02
10 2 126.4 165.02
10 3 132.0 165.02
10 4 133.3 165.02
10 5 132.0 165.02
10 6 126.4 165.02
10 7 > 0 165.02

11 0 182.1 182.1
11 1 > 0 182.1
11 2 143.3 182.1
11 3 149.4 182.1
11 4 151.3 182.1
11 5 151.3 182.1
11 6 149.4 182.1
11 7 143.3 182.1
11 8 > 0 182.1
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