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Einstein-Hilbert functional

Let M be a compact n-dimensional manifold, n > 3.
R(M) := {Riem. metrics on M}.
The renormalised Einstein-Hilbert functional is

[y scald dvold

Em:R(M) - R, Em(g) = vol(M, g)(n-2)/n

[go] = {u* ("2 gy | u>0}.

{Stationary points of &y : [go] = R } = {metrics with constant
scalar curvature}

{Stationary points of &y : R(M) — R } = {Einstein metrics}

\}R



(Conformal) Yamabe constant

The (conformal) Yamabe constant is defined as

Yu(lgl) = Y(M,[g]) == gi!Ef;] Em(g) > —oo.
If S” denote the sphere with the standard structure, then

Yu([9]) < Y(8").

Yamabe problem &y : [g] — R attains its infimum.
Minimizers have scal = c.

Proven by Trudinger 1968, Aubin 1976, Schoen (&Yau)) ~ 1984
Remark

Yu([g]) > 0 if and only if [g] contains a metric of positive scalar
curvature. Then the space of psc metrics in [g] is contractible.

\}R



Reformulation and non-compact manifolds

Let g = u*/("2) gy, gy a complete metric on M.
Define Yamabe operator L% := 42=L A% + scal®.

Lgo d |go
fMLzl y dvo O#UGC?(M[O’OO))}
lul 12n/(n-2) (M, go)

Yu(9) = inf{

For compact M we have

Yu([9o]) = Ym(go)-

For non-compact M we use this as a definition.

~ related work on Yy (g) for M non-compact by Akutagawa,
GroBe, Ammann&Grof3e, and others.

Q=



Obata’s theorem

Theorem (Obata, 1971)
Assume:
» M is connected and compact, n=dimM > 3
> Qo Is an Einstein metric on M
» g = u*("2) gy with scal9 constant
» (M, go) not conformal to S"
Then u is constant.

Conclusion
Em(go) = Y(M,[g0])

This conclusion also holds on M compact if gg is a non-Einstein
metric with scal = const < 0 (Maximum principle).

So in these two cases, we have determined Y(M,[go]).

However, in general, it is difficult to get explicit “good” lower }
bounds for Y(M, [go]). WiR



Recap: Surgery
We consider an embedding of ¢ : SK x D% — M".
Define M# i=(M ~ o(SK x D"K)) Ugi, gricr (D1 x S7HT).
We say: M* arises by k-dimensional surgery from M.

n
M S=1(Skx{0})

Picture for n=2, k=1

\}R



M < L(Sk « én—k)

Picture for n=2, k=1

@k



Gromov-Lawson surgery for Yamabe constants
Assume that M# arises from M by a surgery of dimension
k<n-3.
For 7 € (0,00) and g € R(M) we define a metric
GL-(g) € R(MF).
Theorem A (Ammann&Dahl&Humbert (2013))
There is a constant A, x > 0 with:

Y (GL-(9)) = min{ Yu(9), Aok} - 0-(1).

» Our metric GL,(g) is similar to the Gromov-Lawson
construction for positive scalar curvature metrics.

» Technical implementation differs.

> Special cases were known, e.g. a version with 0 instead A, x > is
due to Petean, the k = 0-case is due to O. Kobayashi, and the
perservation of positivity is the classical
Gromov&Lawson/Schoen&Yau result about psc-preserving \}R
surgeries.



Technical implementation

We write close to S:= 1(S¥ x {0}), r(x) := d(x, S)

2 2 _n-k-1
g= g|S +are+r Ground

where g"-k-1 is the round metric on S"-*-1,

round
l:=—logr.
1 ke
ﬁg ~ €71g|s + di* + gl
We define a metric

g forr>r

GL,(9) =179 for re (2p,1p)
f2(t)g|s + dt? + gk for r<2p

that extends to a metric on M#.

\}R



2p
9p = Fzy

S"*=1 has constant length




Spaces of metrics with Yamabe constants above \

Yir' (A 00)) = {g e R(M) | Yu([g]) > A}

{geR(M) | Yu(lg]) >0}
{g € R(M) | [g] contains a psc metric}

Ro(M) = {g e R(M) |scal” > 0}

Y ((0,00))

12 1

&r



Parametrized version of Theorem A

Assume that M# is obtained by a k-dimensional surgery

from M. or
Yir (A 00)) —== Yy (A, 00))

A generalized Chernysh-Walsh result follows then with the
same analytical tools as in Thm. A = ADH 2013.
Theorem B (A. 2022, in prep.)

The map GL: Yy (A, 00)) = Y,k ((A, ) is a (weak)
homotopy equivalence for2 < k < n-3.

\}R



The constants Ap

Obviously A, x > 0 is not unique, the larger the better.
Unless n= k + 3 > 7, our result holds for

/\ = H f Y Hk+1 Sn—k—1
k= 0] (Hg™ )

where HX* is the simply connected complete Riemannian
manifolds of dimension k + 1 with sec = —c2.

Np = min{/\n,0>/\n,1 yoee ,/\n,n—S}

Examples:
A4 >389, Y(S*)=61.562...
As>45.1, Y(S°) =78.996...

\}R



The constants A, (ct'd)

In most cases we get some explicit values for Ap, x > 0:

The blue values rely on special investigations by Petean and

Ruiz.

n k known A, conjectured Apx  Y(S")

3 0 43.82323 43.82323 43.82323
4 0 61.56239 61.56239 61.56239
4 A1 >38.9 59.40481 61.56239
5 0 78.99686 78.99686 78.99686
5 1 >51.2 78.18644 78.99686
5 2 >451 75.39687 78.99686

\}R



n k known A, conjectured Ay, Y(")

6 0 96.29728 96.29728 96.29728
6 1 >0 95.87367 96.29728
6 2 >5477 94.71444 96.29728
6 3 >49.98 91.68339 96.29728
7 0 113.5272 113.5272 113.5272
7 1 >0 113.2670 113.5272
7 2 >74.50 112.6214 113.5272
7 3 >74.50 111.2934 113.5272
7 4 >0 108.1625 113.5272

For n>7, there are still problems with the explicit values for

k=1and k=n-3.

Q=



(Smooth) Yamabe invariant

For M compact:

o(M):= sup Y (M,[g]) e (-0, Y(S")]
[g1=R(M)

smooth Yamabe invariant. (Introduced by O. Kobayashi and R. Schoen)

Remark
M caries a psc metric < o(M) >0

@k



Supreme Einstein metrics

Following LeBrun, we say a Riemannian Einstein metric g on a
closed manifold M is a supreme Einstein metric if

Em(9) = Yu([g]) =a(M).

The following Riem. manifolds are supreme Einstein:
» Round spheres trivial

» Flat tori (Gromov&Lawson, Schoen&Yau ~’ 83)
E.g. enlargeable Manifolds

» RP3 (Bray&Neves '04) Inverse mean curvature flow

» Compact quotients of 3-dim. hyperbolic space (Perelman,
M. Anderson '06 (sketch), Kleiner&Lott ’08) Ricci flow

» (CP?,ggs) (LeBrun) Seiberg-Witten theory, index theory ~
next talk

If our conjectured values for A, x hold, then (CP3,gFS) is not a
supreme Einstein metric. \}R



Manifolds with 0 < o(M) < A,

Are there M with

0 < O_(M) < /\n = min{/\mo, e 7/\n7n_3} ?

Conjecture (Schoen)

If the finite group T < SO(n + 1) acts freely on S", then the
round metric g ., on S"[T is a supreme Einstein metric.

The conjecture would imply

gS”/r(gr,Z)und) = Y(Sn/ra gr?)und) = U(Sn/r)
vol(SM)2/M 45 oo
(#£)2/m

Unfortunately, only known for I' = {1} and RP®.

=n(n-1)

\}R



A Monotonicity formula for surgery

Corollary (ADH, follows from Theo. A)

Let M# be obtained from M by k-dimensional surgery,
0<k<n-3. Then

o(M#) > min{a(M), Ak}

We define Ap := min{Ano,...,Aps-3} and

Xp, (1) := max{min{t, An},0}. Aﬁ

t t
An YT

For the truncated Yamabe invariant x,, (o(M)) we have

X, (7M7) 2 X, ((M))

and we have equality for2 < k < n-3.

Q=



Bordism results

Let n> 5, T finitely presented

Bordism techniques (Gromov-Lawson, Stolz,...) and
Theorem A yield a well-defined map

sr:QPN(Bry - R
[M,f] = xa,(c(M))

where we chose a representative with a connected
non-empty M and f, : m{(M) — T bijective.

sr(a+b) > min{sr(a),sr(b)}

We get subgroups s; (), 00)) c Q" (BI).

\}R



Descend to ko(BI")
Recall from index theory

) cr
Q" (Br) L. kon(8r) 2= k0, (Br) A KOu(CT)

@k



Descend to ko(BI")
Recall from index theory

) D cr
() -2 kon(Br) ™ k0,(Br) A KOp(C'T)

@k



Descend to ko(BrI")

Recall from index theory

. D per A
QPIM(Br) —— kon(BT) —— KOn(BI) 25 KO, (C* )

/ -
n / //
Sr 7/ -
-
’ .
-
SF // /’/ ?
\Lk//

R

Theorem C (Ammann&Otoba, in prep.)
For a slightly adapted constant A, the truncated Yamabe
invariant descents to a map kon(BI') — R.

Idea of proof

One has to study Yamabe invariants of

ker(QP™(BT) 2 kon(BI)).

Given by Baas-Sullivan singular manifolds, obtained by gluing \}R
of multi-HP2-bundles, see work by Hanke.



Interpretations of Theorem B

Theorem B’

Let A€ [0,Ank). Themap GL: Yy (X, 00)) = Yk ((X, 00)) is
well-defined (up to homotopy) forO < k<n-3 and is a (weak)
homotopy equivalences for2 < k < n- 3.

In fact these maps and the associated homotopies are

compatible with the inclusion associated to A > ).
Thus we get a morphism of “filtered topological spaces”

GL: ( (()‘ oo))))\e [0,Ank) (YI\_/IL(()\’ OO))))\E[O,/\H,;() ’

which are “filtered homotopy equivalences” for2 < k < n-3.

\}R



Higher Yamabe invariants

Yamabe invariant o(M) :=sup{A e R | Yy, (X, 00)) # &}



Higher Yamabe invariants

Yamabe invariant o(M) == sup{A e R | Yy,' (), 0)) # &}
(@) =2, 71(S)={}

F*
Functor from

(R,>) — ({@, {*}}, maps)
A (Y ()
)\25\ — 7'(',1(%)

So far: nothing than a very complicated way to characterize a
real number!

@k



Higher Yamabe invariants

Truncated Yamabe invariant x, (o(M))
T1(2) =2, m1(S)={*}

F*
Essentially a functor from

([0,An),2) — ({2, {*}},maps)
A= (Y (o))

A>X — 1q(—)

So far: nothing than a very complicated way to characterize a
number in [0,Ap]!

@k



Higher Yamabe invariants, ct'd

Higher Yamabe invariant x, (o*(M))), k e Nu {0}. For k =0
we get a functor from

Xp, ()
([0,An),>) ——— (sets,maps)

A — 1w (Y (N )
A2N — m(—)

For k > 1 we get a functor from

X/\n (Uk)

([O,An),Z) _— (grpsﬂojhomw())

A o— m (Y (N )
)\25\ — 7Tk(‘—>)

For k = 1: similar with conjugacy classes.

Q=



Theorem B implies that all higher (truncated) Yamabe invariants
are invariant under suitable bordisms, i.e. those that can be
decomposed in surgeries of dimension k € {2,3,...,n-3}.

We expect — but we are far from a proof — that the higher

Yamabe invariants of CP® are non-trivial for
82.986 < A < 96.297.

Q=



Sketch of Proof for Theorem A

Theorem A (Ammann&Dahl&Humbert (2013))
There is a constant \p, i > 0 with:

YM#(QET(Q)) 2 min{YM(g)vAn,k} - OT(1 )

Assume we have 7; - oo with g;:= GL,,(g) and
Ao 1= lim ¥y (gi) < Y(M, g).

Choose Yamabe minimizer g; € [g;].
After passing to a subsequence, then for some p; € M#

(M#7g/7pl') - (N, h7p°<>)
in the pointed Gromov-Hausdorff-C*-sense.
» Either: after removing singularities from (N, h, p- ) we get
(M, g); then A\ox > Y(M, g). ¢

» Or (N, h, p) is in a well-controlled family of model spaces
~ /\n,k

\}R



Sketch of Proof for Theorem B

Theorem B (A. 2022, in prep.)
The map GL: Yy, (A, 00)) = Y\ (A, 00)) is a (weak)
homotopy equivalence for2 < k < n-3.

Well-definedness
Roughly as the proof of Theorem A, but in families.
Weak homotopy equivalence

Split the construction in several steps, R, (M) := Yy, (A, 0))
Step no. 1 : GL£4 makes the normal exponential maps coincide
for all metrics in compact family, and cuts off the lower order
terms. )

GL: R.A(M) -~ RS (M) is a homotopy inverse to the

inclusion RS, “(M) — R.,(M)

\}R



Step no. 2 Make a conformal deformation that makes the
metrics in the normal direction of torpedo type. Obviously this
step does not affect the Yamabe constant. Thus trivially we
have a homotopy equivalence:

g£2 : Rf:,E(M) N Rf:,ginﬂ—torp(M)

Q=



9r =49

g,.:Fzg




Step no. 3 Slow down the inflation in tangential direction slowly.
One analyses certain blow-up limits in analogy to the proof of
Theorem A. Then remove the curvature of the normal bundle of
S. Below A, x one obtains a homotopy equivalence.

K K
g£3 . Rf}\,e,mﬂ—torp(M) N Rf/\,e’,torp,prod(M)

Q=
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Step no. 4 Let the torpedos go to infinity. We get a
convergence against manifolds with an end isometric (in a
standard way) to

(Sk X Snikq X [07 oo) M1ground + MZgrr(])uﬁd1 + dtz)'
Get a homotopy equivalence

g£4 S ,€ ,torp, prod(M) N Rf:xsn’k’1,std(M\ L(Sk % 0))

\}R



9%p=9 9, =F’g

S"~F=1 has constant length

§7=k=1 x Sk has constant length
P



With
M~ L(Sk x0) = M7 L#(Sn_k_1 x0)

we get
Rf:x3n7k4 ,std(M\L(Skxo)) ~ Rf;:kJ XSk’Std(M#\[,#(Sn_k_1 0)).

and this completes the proof. O

\}R



Thanks for the attention.
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Conjecture #1:
Y(Hléﬂ % Sn—k—1) > Y(Rk+1 « Sn—k—1)

Conjecture #2:
The infimum in the definition of Y (HA*! x S"k-1) is attained by
an O(k +1) x O(n- k) invariant functionif 0 < c < 1.
O(n - k)-invariance is difficult,
O(k + 1)-invariance follows from standard reflection methods
Comments
If we assume Conjecture #2, then Conjecture #1 reduces to an
ODE and Y (HA*" x S™%=1) can be calculated numerically.
Assuming Conjecture #2, a maple calculation confirmed
Conjecture #1 for all tested n, k and c.
The conjecture would imply:

0(S%x 8%) >Ny =59.4..
Compare this to
Y(S=615... Y(S$?x$?)=50.2.. o(CP?)=53.31... \}R



More values for A, «

n k /\n,k > /\n,k = Y(Sn)
known conjectured

3 43.8 43.8 43.8

4 0 615 61.5 61.5

4 1 389 59.4 61.5

5 0 789 78.9 78.9

5 1 566 78.1 78.9

5 2 451 75.3 78.9

6 0 962 96.2 96.2

6 1 >0 95.8 96.2

6 2 547 94.7 96.2

6 3 499 91.6 96.2

7 0 1135 113.5 113.5

7 1 >0 118.2 113.5

7 2 745 112.6 113.5

7 3 745 111.2 113.5

7 4 >0 108.1 113.5 \}R



n k NApg> Aok = Y(S™)
known conjectured
8 0 130.7 130.7 130.7
8 1 >0 130.5 130.7
8 2 922 130.1 130.7
8 3 957 129.3 130.7
8 4 922 127.9 130.7
8 5 >0 124.7 130.7
9 0 1478 147.8 147.8
9 1 109.2 147.7 147.8
9 2 1094 147.4 147.8
9 3 1143 146.9 147.8
9 4 1143 146.1 147.8
9 5 1094 144.6 147.8
9 6 >0 141.4 147.8

Q=



n k Ank > Ank = Y(S)
known conjectured
10 0 165.0 165.02
10 1 102.6 165.02
10 2 1264 165.02
10 3 1320 165.02
10 4 133.3 165.02
10 5 1320 165.02
10 6 1264 165.02
10 7 >0 165.02
11 0 1821 182.1
11 1 >0 182.1
11 2 1433 182.1
11 3 1494 182.1
11 4 1513 182.1
11 5 1513 182.1
11 6 1494 182.1
11 7 1433 182.1
11 8 >0 182.1

Q=
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